首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition.

Methodology/Principal Findings

In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress.

Conclusions/Significance

These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus.  相似文献   

2.
The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen, eradication of established tumors in mice, inhibition and activation of natural killer cells, promotion of differentiation into T regulatory cells, stimulation of T cell proliferation and induction of T cell apoptosis. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.  相似文献   

3.

Background

In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane.

Methods

Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN). Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry.

Results

Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold.

Conclusion

In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.  相似文献   

4.
The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell‐to‐cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT‐PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes.  相似文献   

5.
6.
Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.  相似文献   

7.
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin‐1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non–small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin‐1 and flotillin‐2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin‐1 as well as its EV‐to‐cellular ratio vary drastically depending on cell type.  相似文献   

8.
We investigated the effect of benzyl isothiocyanate (BITC) on the hydrogen peroxide‐induced gene expression of a T‐helper‐2 cytokine, interleukin (IL)‐13, in T lymphocytic leukemia Jurkat cells. The 24‐h pretreatment of BITC significantly inhibited the IL‐13 expression enhanced by hydrogen peroxide. Although the BITC pretreatment did not change the enhanced level of the phosphorylated c‐Jun N‐terminal kinase (JNK), it significantly inhibited the nuclear translocation of c‐Jun induced by hydrogen peroxide. BITC also increased the protein expression of glutathione S‐transferase (GST) isozymes, GSTP1/2, as well as the total GST activity. A GSTP1/2‐specific inhibitor, 6‐(7‐nitro‐2,1,3‐benzoxadiazol‐4‐ylthio)hexanol (NBDHEX), significantly counteracted the inhibitory effect of BITC on the hydrogen peroxide‐enhanced IL‐13 upregulation as well as the c‐Jun nuclear translocation. Taken together, these results suggested that BITC inhibits the oxidative stress‐mediated IL‐13 mRNA expression, possibly through interference of the c‐Jun phosphorylation by GSTP.  相似文献   

9.
Urinary exosomes have been proposed as potential diagnostic tools. TNF superfamily cytokines and receptors may be present in exosomes and are expressed by proximal tubular cells. We have now studied the expression of selected TNF superfamily proteins in exosome-like vesicles from cultured human proximal tubular cells and human urine and have identified additional proteins in these vesicles by LC-MS/MS proteomics. Human proximal tubular cells constitutively released exosome-like vesicles that did not contain the TNF superfamily cytokines TRAIL or TWEAK. However, exosome-like vesicles contained osteoprotegerin (OPG), a TNF receptor superfamily protein, as assessed by Western blot, ELISA or selected reaction monitoring by nLC-(QQQ)MS/MS. Twenty-one additional proteins were identified in tubular cell exosome-like vesicles, including one (vitamin D binding protein) that had not been previously reported in exosome-like vesicles. Twelve were extracellular matrix proteins, including the basement membrane proteins type IV collagen, nidogen-1, agrin and fibulin-1. Urine from chronic kidney disease patients contained a higher amount of exosomal protein and exosomal OPG than urine from healthy volunteers. Specifically OPG was increased in autosomal dominant polycystic kidney disease urinary exosome-like vesicles and expressed by cystic epithelium in vivo. In conclusion, OPG is present in exosome-like vesicles secreted by proximal tubular epithelial cells and isolated from Chronic Kidney Disease urine.  相似文献   

10.

Background

The NF-κB signaling pathway plays a role in local and remote tissue damage following ischemia-reperfusion (I/R) injury to skeletal muscles. Evidence suggests that exosomes can act as intercellular communicators by transporting active proteins to remote cells and may play a role in regulating inflammatory processes. This study aimed to profile the exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury.

Results

To investigate the potential changes in protein expression mediated by NF-κB in secreted exosomes in the serum following I/R injury, the levels of circulating exosomal proteomes in C57BL/6 and NF-κB−/− mice were compared using two dimensional differential in-gel electrophoresis (2-DE), liquid chromatography tandem mass spectrometry (LC-MS/MS), and proteomic analysis. In C57BL/6 mice, the levels of circulating exosomal proteins, including complement component C3 prepropeptide, PK-120 precursor, alpha-amylase one precursor, beta-enolase isoform 1, and adenylosuccinate synthetase isozyme 1, increased following I/R injury. However, in the NF-κB−/− mice, the expression of the following was upregulated in the exosomes: protease, serine 1; glyceraldehyde-3-phosphate dehydrogenase-like isoform 1; glyceraldehyde-3-phosphate dehydrogenase; and pregnancy zone protein. In contrast, the expression of apolipoprotein B, complement component C3 prepropeptide, and immunoglobulin kappa light chain variable region was downregulated in NF-κB−/− mice. Bioinformatic annotation using the Protein Analysis Through Evolutionary Relationships (PANTHER) database revealed that the expression of the exosomal proteins that participate in metabolic processes and in biological regulation was lower in NF-κB−/− mice than in C57BL/6 mice, whereas the expression of proteins that participate in the response to stimuli, in cellular processes, and in the immune system was higher.

Conclusions

The data presented in this study suggest that NF-κB might regulate exosomal protein expression at a remote site via circulation following I/R injury.  相似文献   

11.

Background

Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions.

Methodology/Principal Findings

Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls.

Conclusions/Significance

Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted “cardiosomes”, can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.  相似文献   

12.
Hydrogen peroxide, the major oxidoradical species in the central nervous system, has been involved in neuronal cell death and associated neurodegenerative diseases. In this study, we have investigated the involvement of the lysosomal pathway in the cytotoxic mechanism of hydrogen peroxide in human neuroblastoma cells. Alteration of lysosomal and mitochondrial membrane integrity was shown to be an early event in the lethal cascade triggered by oxidative stress. Desferrioxamine (DFO), an iron chelator that abolishes the formation of reactive oxygen species within lysosomes, prevented lysosome leakage, mitochondrial permeabilization and caspase-dependent apoptosis in hydrogen peroxide-treated cells. Inhibition of cathepsin D, not of cathepsin B, as well as small-interference RNA-mediated silencing of the cathepsin D gene prevented hydrogen peroxide-induced injury of mitochondria, caspase activation, and TUNEL-positive cell death. Cathepsin D activity was shown indispensable for translocation of Bax onto mitochondrial membrane associated with oxidative stress. DFO abolished both the cytosolic relocation of Cathepsin D and the mitochondrial relocation of Bax in hydrogen peroxide-treated cells. siRNA-mediated down-regulation of Bax expression protected the cells from oxidoradical injury. The present study identifies the lysosome as the primary target and the axis cathepsin D-Bax as the effective pathway of hydrogen peroxide lethal activity in neuroblastoma cells.  相似文献   

13.
Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).  相似文献   

14.
Expression of chemokine receptor CX3CR1 is reportedly restricted to several cell types including natural killer cells, cytotoxic T cells, monocytes, and macrophages. However, its expression and function on exosomes, which are nanosized extracellular vesicles known to act as mediators of intercellular communications, remain unclear. Here, we investigated CX3CR1 expression on exosomes isolated from various cell types. Although we found that all the exosomes tested in our study highly expressed CX3CR1, this chemokine receptor was expressed only inside, but barely on, their source cells. Moreover, exosomal CX3CR1 was capable of binding soluble CX3CL1. Therefore, our study suggests that CX3CR1 is a novel and ligand-competent exosome receptor.  相似文献   

15.
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Growth arrest and DNA damage-inducible gene 153 (GADD153) is a CCAAT/enhancer binding protein (C/EBP) related gene and is induced in response to various stimuli including DNA damaging agents, UV irradiation, and serum starvation. In this study, we investigated which intracellular signals contribute to the expression of GADD153 mRNA in Jurkat cells in response to oxidative stress using several kinds of kinase inhibitors. GADD153 mRNA expression was immediately enhanced following hydrogen peroxide exposure and was significantly inhibited by treatment with H-7, staurosporin, and Ro-31-8220. In particular, rottlerin, a PKCdelta specific inhibitor, markedly attenuated hydrogen peroxide-induced GADD153 mRNA expression even at 1 microM. Treatment with a potent PKC activator, phorbol-12-myristate-13-acetate (PMA), augmented GADD153 mRNA in Jurkat cells in the presence of hydrogen peroxide, although PMA alone induced GADD153 mRNA marginally. Hydrogen peroxide significantly enhanced the AP-1 binding activity of the nuclear extract from Jurkat cells to the GADD153 AP-1 binding site. AP-1 binding activity was suppressed by rottlerin treatment. These findings indicate that PKC, especially PKCdelta, plays an important role in the induction of GADD153 mRNA following oxidative stress.  相似文献   

18.
Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.  相似文献   

19.
Advanced glycation end‐products (AGEs), epidermal growth factor receptor (EGFR), reactive oxygen species (ROS), and extracellular signal‐regulated kinases (ERK) are implicated in diabetic nephropathy (DN). Therefore, we asked if AGEs‐induced ERK protein phosphorylation and mitogenesis are dependent on the receptor for AGEs (RAGE)–ROS–EGFR pathway in normal rat kidney interstitial fibroblast (NRK‐49F) cells. We found that AGEs (100 µg/ml) activated EGFR and ERK1/2, which was attenuated by RAGE short‐hairpin RNA (shRNA). AGEs also increased RAGE protein and intracellular ROS levels while RAGE shRNA and N‐acetylcysteine (NAC) attenuated AGEs‐induced intracellular ROS. Hydrogen peroxide (5–25 µM) increased RAGE protein level while activating both EGFR and ERK1/2. Low‐dose hydrogen peroxide (5 µM) increased whereas high‐dose hydrogen peroxide (100 µM) decreased mitogenesis at 3 days. AGEs‐activated EGFR and ERK1/2 were attenuated by an anti‐oxidant (NAC) and an EGFR inhibitor (Iressa). Moreover, AGEs‐induced mitogenesis was attenuated by RAGE shRNA, NAC, Iressa, and an ERK1/2 inhibitor (PD98059). In conclusion, it was found that AGEs‐induced mitogenesis is dependent on the RAGE–ROS–EGFR–ERK1/2 pathway whereas AGEs‐activated ERK1/2 is dependent on the RAGE–ROS–EGFR pathway in NRK‐49F cells. J. Cell. Biochem. 109: 38–48, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号