首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin‐3‐O‐β‐d ‐glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen‐induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin‐induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.  相似文献   

2.
The antiplatelet and antithrombotic effects of ent-16β,17-dihydroxy-kauran-19-oic acid (DDKA) isolated from Siegesbeckia pubescens were investigated with different methods both in vitro and in vivo. We tested the antithrombotic activity of DDKA in arterio-venous shunt model. The effects of DDKA on adenosine diphosphate (ADP)-, Thrombin-, Arachidonic acid-induced rat platelets aggregation were tested in vitro. We also assessed its bleeding side effect by measuring coagulation parameters after intravenous administration for 5 days and investigated the potential mechanisms underlying such activities. In vivo, DDKA significantly reduced thrombus weight in the model of arterio-venous shunt. Meanwhile, DDKA increased plasma cAMP level determined by radioimmunoassay in the same model. Notably, DDKA prolonged PT and APTT in rats after intravenous administration DDKA for successive 5 days. In vitro, pretreatment with DDKA on washed rat platelets significantly inhibited various agonists stimulated platelet aggregation and caused an increase in cAMP level in platelets activated by ADP. These findings support our hypothesis that DDKA possesses antiplatelet and antithrombotic activities. The mechanisms underlying such activities may involve the anticoagulatory effect and cAMP induction.  相似文献   

3.

Background

The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function.

Objectives

Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo.

Methods and Results

We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa.

Conclusions

Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search for new antithrombotic therapies.  相似文献   

4.
Therapeutic angiogenesis is critical to wound healing and ischemic diseases such as myocardial infarction and stroke. For development of therapeutic agents, a search for new angiogenic agents is the key. Ferulic acid, a phytochemical found in many fruits and vegetables, exhibits a broad range of therapeutic effects on human diseases, including diabetes and cancer. This study investigated the augmenting effect of ferulic acid on angiogenesis through functional modulation of endothelial cells. Through endothelial cell migration and tube formation assays, ferulic acid (10?6–10?4 M) was found to induce significant angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro without cytotoxicity. With chorioallantoic membrane assay, ferulic acid (10?6–10?5 M) was also found to promote neovascularization in vivo. Using Western blot analysis and quantitative real-time polymerase chain reaction, we found that ferulic acid increased vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression in HUVECs. Furthermore, the amounts of hypoxic-induced factor (HIF) 1α mRNA and protein, the major regulator of VEGF and PDGF, also showed up-regulation by ferulic acid. Electrophoretic migration shift assay showed that the binding activity of HIF-1α was also enhanced with ferulic acid treatment of HUVECs. Moreover, inhibitors of extracellular-signal-regulated kinase 1/2 and phosphoinositide-3 kinase (PI3K) abolished the binding activity of HIF-1α and the subsequent activation of VEGF and PDGF production by ferulic acid. Thus, both mitogen-activated protein kinase and PI3K pathways were involved in the angiogenic effects of ferulic acid. Taken together, ferulic acid serves as an angiogenic agent to augment angiogenesis both in vitro and in vivo. This effect might be observed through the modulation of VEGF, PDGF and HIF-1α.  相似文献   

5.
Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5?5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders.  相似文献   

6.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

7.
Inappropriate platelet aggregation can cause blood coagulation and thrombosis. In this study, the effect of an ethanol extract of Ramulus mori (ERM) on blood circulation was investigated. The antithrombotic activity of ERM on rat carotid arterial thrombosis was evaluated in vivo, and the effect of ERM on platelet aggregation and blood coagulation time was evaluated ex vivo. To evaluate the safety of ERM, its cytotoxicity to platelets and its effect on tail bleeding time were assessed; ERM was not toxic to rat platelets and did not prolong bleeding time. Moreover, administering ERM to rats had a significant preventive effect on carotid arterial thrombosis in vivo, and significantly inhibited adenosine diphosphate- and collagen-induced platelet aggregation ex vivo, whereas it did not prolong coagulation periods, such as prothrombin time and activated partial thromboplastin time. The results suggest that ERM is effective in improving blood circulation via antiplatelet activity rather than anticoagulation activity.  相似文献   

8.
The mechanisms responsible for platelet activation, the prothrombotic state, in non‐valvular atrial fibrillation (NVAF) are still obscure. Microvesicles (MVs) can transfer various messages to target cells and may be helpful for exploring the detailed mechanisms. We aimed to investigate the possible mechanisms by which proatherogenic factors of NVAF contribute to platelet activation. Two hundred and ten patients with NVAF were stratified as being at ‘low to moderate risk’ or ‘high risk’ for stroke according to the CHADS2 score. Levels of platelet‐derived MVs (PMVs) and platelet activation were examined. CD36‐positive or CD36‐deficient human platelets were stimulated by MVs isolated from NVAF patients with or without various inhibitors in vitro. Levels of PMVs and platelet activation markers enhanced significantly in high‐risk patients. The MVs isolated from plasma of NVAF patients bound to platelet CD36 and activated platelets by phosphorylating the mitogen‐activated protein kinase 4/Jun N‐terminal kinase 2 (MKK4/JNK2) pathways. However, CD36 deficiency protected against MV‐induced activation of platelets. We reveal a possible mechanism of platelet activation in NVAF and suggest that the platelet CD36 might be an effective target in preventing the prothrombotic state in NVAF.  相似文献   

9.
The effects of products synthesized and/or secreted by activated platelets on production of PGI2 by human, rat and rabbit vascular rings were investigated. Of the platelet dense body constituents, 5HT stimulated PGI2 production by vascular tissue of all three species whereas ADP was active only on rat tissue. Of the lipids produced during platelet activation, PAF stimulated PGI2 production by vascular tissue of all three species, Lysophosphatidate was less active than PAF on rabbit and human tissue and inactive in rat tissue, and the TxA2-mimetic, U46619, was inactive on vascular tissue of all three species. It is concluded that there are species variations in the effects of agonists on vascular PGI2 production and that platelet-derived products other than platelet-derived growth factor and β-thromboglobulin could modulate PGI2 production to regulate platelet activation in vivo.  相似文献   

10.
Background/PurposeJuglone, a natural compound widely found in Juglandaceae plants, has been suggested as a potential drug candidate for treating cancer, inflammation, and diabetic vascular complications. In the present study, the antiplatelet effect and underlying mechanisms of juglone were investigated for the first time.Study design/methodsHuman platelet aggregation and activation were measured by turbidimetric aggregometry, flow cytometry, and Western blotting. In vitro antithrombotic activity of juglone was assessed using collagen-coated flow chambers under whole-blood flow conditions. The effect of juglone on protein disulfide isomerase (PDI) activity was determined by the dieosin glutathione disulfide assay.ResultsJuglone (1 – 5 μM) inhibited platelet aggregation and glycoprotein (GP) IIb/IIIa activation caused by various agonists. In a whole blood flow chamber system, juglone reduced thrombus formation on collagen-coated surfaces under arterial shear rates. Juglone abolished intracellular Ca2+ elevation and protein kinase C activation caused by collagen, but had no significant effect on that induced by G protein-coupled receptor agonists. In contrast, Akt activation caused by various agonists were inhibited in juglone-treated platelets. Additionally, juglone showed inhibitory effects on both recombinant human PDI and platelet surface PDI at concentrations similar to those needed to prevent platelet aggregation.ConclusionJuglone exhibits potent in vitro antiplatelet and antithrombotic effects that are associated with inhibition of Akt activation and platelet surface PDI activity.  相似文献   

11.
Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47phox, a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47phox and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.  相似文献   

12.
Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM‐A) was recently described to regulate platelet activation. Specific deletion of JAM‐A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet‐derived JAM‐A to neointima formation after vascular injury. Mice with or without platelet‐specific (tr)JAM‐A‐deficiency in an apolipoprotein e (apoe?/?) background underwent wire‐induced injury of the common carotid artery. Ex vivo imaging by two‐photon microscopy revealed increased platelet coverage at the site of injury in trJAM‐A‐deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM‐A‐deficient platelets than to control platelets. Inhibition of αMβ2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM‐A?/? apoe?/? mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM‐A+/+ apoe?/? littermates 2 weeks, but not 4 weeks after injury. Re‐endothelialization was decreased in trJAM‐A?/? apoe?/? mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM‐A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.  相似文献   

13.
Summary Saponin-permeabilization (30 µg/ml) of the platelet plasma membrane, which enables access of added compounds to mitochondrial overt carnitine palmitoyltransferase (CPT I), was applied to allow the rapid determination of CPT I activity in situ. The effects of diabetes and short-term incubation with insulin in vitro on the kinetic parameters and malonyl-CoA sensitivity of CPT I were also studied in rat platelets. CPT I exhibited ordinary Michaelis-Menten kinetics when platelets were incubated with palmitoyl-CoA. Malonyl-CoA showed an I50 (concentration giving 50% inhibition of CPT activity) of 0.92 ± 0.11 µM in permeabilized platelets. Platelets obtained from diabetic rats (induced by streptozotocin injection) exhibited an increased Vmax. and I50 for malonyl-CoA, and an unaltered Km for palmitoyl-CoA. In contrast, preincubation of platelets prepared from both fed control rats and diabetic rats with insulin (100 and 150 µ-cU/ml) led to a decrease in enzyme activity when assayed with 75 µM palmitoyl-CoA and 0.5 mM L-carnitine as substrates. These in vivo and in vitro results suggested that insulin directly modulated rat platelet CPT I activity, as it does in the liver.  相似文献   

14.
Many clinical trials have demonstrated the beneficial effects of soybean (Glycine max) on general cardiovascular health. Among a variety of soybeans, black soybean is known to display diverse biological activities superior to those of yellow and green soybeans, such as in antioxidant, anti-inflammatory and anticancer activities. However, few studies have been directed on the effect of black soybean on cardiovascular function. In this study, we aimed to investigate the effect of black soybean extract (BB) on platelet activation, a key contributor to thrombotic diseases. In freshly isolated human platelets, BB has shown potent inhibitory activity on collagen-induced platelet aggregation, while yellow soybean extract had marginal activity only. BB also attenuated serotonin secretion and P-selectin expression, which are important factors for the platelet–tissue interaction along with thromboxane A2 formation. These in vitro results were further confirmed in an ex vivo platelet aggregation measurement and in vivo venous thrombosis model where oral administration of BB reduced collagen-induced platelet aggregation and FeCl3-induced thrombus formation significantly. A potential active ingredient for antiplatelet effects of BB was isolated and identified to be adenosine through bioassay-directed fractionation and NMR and ESI-MS analyses. These results indicate that black soybean can be a novel dietary supplement for the prevention of cardiovascular risks and the improvement of blood circulation.  相似文献   

15.
Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. armepavine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects on T lymphocytes and on lupus nephritic mice. The aim of this study was to investigate whether Arm could exert anti-hepatic fibrogenic effects in vitro and in vivo. A cell line of rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) to evaluate the inhibitory effects of Arm. An in vivo therapeutic study was conducted in bile duct-ligated (BDL) rats. BDL rats were given Arm (3 or 10 mg/kg) by gavage twice daily for 3 weeks starting from the onset of BDL. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. In vitro, Arm (1-10 μM) concentration-dependently attenuated TNF-α- and LPS-stimulated α-SMA protein expression and AP-1 activation by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced collagen collagen deposition, NFκB activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced plasma AST and ALT levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of BDL rats as compared with vehicle treatment. Moreover, Arm attenuated the mRNA expression levels of col 1α2, TGF-β1, TIMP-1, ICAM-1, iNOS, and IL-6 genes, but up-regulated metallothionein genes. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NF-κB activation pathways.  相似文献   

16.
The bacterium Helicobacter pylori causes peptic ulcers and gastric cancer in human beings by mechanisms yet not fully understood. H. pylori produces urease which neutralizes the acidic medium permitting its survival in the stomach. We have previously shown that ureases from jackbean, soybean or Bacillus pasteurii induce blood platelet aggregation independently of their enzyme activity by a pathway requiring platelet secretion, activation of calcium channels and lipoxygenase‐derived eicosanoids. We investigated whether H. pylori urease displays platelet‐activating properties and defined biochemical pathways involved in this phenomenon. For that the effects of purified recombinant H. pylori urease (HPU) added to rabbit platelets were assessed turbidimetrically. ATP secretion and production of lipoxygenase metabolites by activated platelets were measured. Fluorescein‐labelled HPU bound to platelets but not to erythrocytes. HPU induced aggregation of rabbit platelets (ED50 0.28 μM) accompanied by ATP secretion. No correlation was found between platelet activation and ureolytic activity of HPU. Platelet aggregation was blocked by esculetin (12‐lipoxygenase inhibitor) and enhanced ~3‐fold by indomethacin (cyclooxygenase inhibitor). A metabolite of 12‐lipoxygenase was produced by platelets exposed to HPU. Platelet responses to HPU did not involve platelet‐activating factor, but required activation of verapamil‐inhibitable calcium channels. Our data show that purified H. pylori urease activates blood platelets at submicromolar concentrations. This property seems to be common to ureases regardless of their source (plant or bacteria) or quaternary structure (single, di‐ or tri‐chain proteins). These properties of HPU could play an important role in pathogenesis of gastrointestinal and associated cardiovascular diseases caused by H. pylori.  相似文献   

17.
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of l-carnitine (γ-trimethylamino-β-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of l-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO, a strong physiological oxidant) in vitro. We also investigated the effects of l-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals ( O2 - · ) \left( {{\hbox{O}}_2^{ - \bullet }} \right) , lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2 - · {\hbox{O}}_2^{ - \bullet } , and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO. Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.  相似文献   

18.
Guatteria pogonopus Martius , a plant belonging to the Annonaceae family, is found in the remaining Brazilian Atlantic Forest. In this study, the chemical composition and antitumor effects of the essential oil isolated from leaves of G. pogonopus was investigated. The chemical composition of the oil was determined by GC‐FID and GC/MS analyses. The in vitro cytotoxicity was evaluated against three different tumor cell lines (OVCAR‐8, NCI‐H358M, and PC‐3M), and the in vivo antitumor activity was tested in mice bearing sarcoma 180 tumor. A total of 29 compounds was identified and quantified in the oil. The major compounds were γ‐patchoulene (13.55%), (E)‐caryophyllene (11.36%), β‐pinene (10.37%), germacrene D (6.72%), bicyclogermacrene (5.97%), α‐pinene (5.33%), and germacrene B (4.69%). The essential oil, but neither (E)‐caryophyllene nor β‐pinene, displayed in vitro cytotoxicity against all three tumor cell lines tested. The obtained average IC50 values ranged from 3.8 to 20.8 μg/ml. The lowest and highest values were obtained against the NCI‐H358M and the OVCAR‐8 cell lines, respectively. The in vivo tumor‐growth‐inhibition rates in the tumor‐bearing mice treated with essential oil (50 and 100 mg/kg/d) were 25.3 and 42.6%, respectively. Hence, the essential oil showed significant in vitro and in vivo antitumor activity.  相似文献   

19.
Alzheimer disease (AD) is characterized by a complex heterogeneity of pathological changes, and any therapeutic approach categorically requires a multi‐targeted way. It has been demonstrated that together with the hallmarks of the disease such as neurofibrillary tangles and senile plaques, oxidative and inflammatory stress covered an important role. Dimethyl fumarate (DMF) is an orally bioavailable methyl ester of fumaric acid and activator of Nrf2 with potential neuroprotective and immunomodulating activities. Therefore, the aim of the present work was to evaluate the potential beneficial effects of DMF, compared with its active metabolite monomethyl fumarate (MMF) (both at 30 μM) in an in vitro Alzheimer's model using SH‐SY5Y human neuroblastoma cell lines stimulated with amyloid‐beta (Aβ). Moreover, the effect of DMF, compared with MMF, was evaluate by an ex vivo model using organotypic hippocampal slice cultures stimulated with Aβ1‐42 (1 μg/ml), to better understand its action in a pathological setting. In both models, DMF pre‐treatment (30 μM) preserved cellular viability from Aβ stimulation, reducing tau hyper‐phosphorylation, much more efficiently then MMF (30 μM). Moreover, DMF was able to induce an activation of manganese superoxide dismutase (MnSOD) and heme‐oxygenase‐1 (HO‐1), decreasing the severity of oxidative stress. Our results showed important multi‐protective effects of DMF pre‐treatment from Aβ stimulation both in in vitro and ex vivo models, highlighting an Nrf2/NF‐κB‐dependent mechanism, which could provide a valuable support to the therapies for neurodegenerative diseases today.  相似文献   

20.

Background

Brazilin, isolated from the heartwood of Caesalpinia sappan L., has been shown to possess multiple pharmacological properties.

Methods

In this study, platelet aggregation, flow cytometry, immunoblotting analysis, and electron spin resonance (ESR) spectrometry were used to investigate the effects of brazilin on platelet activation ex vivo. Moreover, fluorescein sodium-induced platelet thrombi of mesenteric microvessels was also used in in vivo study.

Results

We demonstrated that relatively low concentrations of brazilin (1 to 10 μM) potentiated platelet aggregation induced by collagen (0.1 μg/ml) in washed human platelets. Higher concentrations of brazilin (20 to 50 μM) directly triggered platelet aggregation. Brazilin-mediated platelet aggregation was slightly inhibited by ATP (an antagonist of ADP). It was not inhibited by yohimbine (an antagonist of epinephrine), by SCH79797 (an antagonist of thrombin protease-activated receptor [PAR] 1), or by tcY-NH2 (an antagonist of PAR 4). Brazilin did not significantly affect FITC-triflavin binding to the integrin αIIbβ3 in platelet suspensions. Pretreatment of the platelets with caffeic acid phenethyl ester (an antagonist of collagen receptors) or JAQ1 and Sam.G4 monoclonal antibodies raised against collagen receptor glycoprotein VI and integrin α2β1, respectively, abolished platelet aggregation stimulated by collagen or brazilin. The immunoblotting analysis showed that brazilin stimulated the phosphorylation of phospholipase C (PLC)γ2 and Lyn, which were significantly attenuated in the presence of JAQ1 and Sam.G4. In addition, brazilin did not significantly trigger hydroxyl radical formation in ESR analysis. An in vivo mouse study showed that brazilin treatment (2 and 4 mg/kg) significantly shortened the occlusion time for platelet plug formation in mesenteric venules.

Conclusion

To the best of our knowledge, this study provides the first evidence that brazilin acts a novel collagen receptor agonist. Brazilin is a plant-based natural product, may offer therapeutic potential as intended anti-thrombotic agents for targeting of collagen receptors or to be used a useful tool for the study of detailed mechanisms in collagen receptors-mediated platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号