首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Metabolic flux analysis of cultured hepatocytes exposed to plasma   总被引:3,自引:0,他引:3  
Hepatic metabolism can be investigated using metabolic flux analysis (MFA), which provides a comprehensive overview of the intracellular metabolic flux distribution. The characterization of intermediary metabolism in hepatocytes is important for all biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. During BAL operation, hepatocytes are exposed to plasma or blood from the patient, at which time they are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. In a prior study, we found that preconditioning the primary rat hepatocytes in culture medium containing physiological levels of insulin, as opposed to the typical supraphysiological levels found in standard hepatocyte culture media, reduced lipid accumulation during subsequent plasma exposure. Furthermore, supplementing the plasma with amino acids restored hepatospecific functions. In the current study, we used MFA to quantify the changes in intracellular pathway fluxes of primary rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. We found that culturing hepatocytes in medium containing lower physiological levels of insulin decreased the clearance of glucose and glycerol with a concomitant decrease in glycolysis. These findings are consistent with the general notion that low insulin, especially in the presence of high glucagon levels, downregulates glycolysis in favor of gluconeogenesis in hepatocytes. The MFA model shows that, during subsequent plasma exposure, low-insulin preconditioning upregulated gluconeogenesis, with lactate as the primary precursor in unsupplemented plasma, with a greater contribution from deaminated amino acids in amino acid-supplemented plasma. Concomitantly, low-insulin preconditioning increased fatty acid oxidation, an effect that was further enhanced by amino acid supplementation to the plasma. The increase in fatty acid oxidation reduced intracellular triglyceride accumulation. Overall, these findings are consistent with the notion that the insulin level in medium culture presets the metabolic machinery of hepatocytes such that it directly impacts on their metabolic behavior during subsequent plasma culture.  相似文献   

2.
An on-line high-pressure liquid chromatography (HPLC) system capable of measuring amino acids and carbohydrates was used to study metabolism in mammalian cell culture systems. The HPLC method utilized anion-exchange chromatography followed by integrated pulsed amperometric detection. The method is capable of measuring 19 amino acids plus glucose with a complete method time of 65 min. In actual cell cultures, the method was shown to be useful for monitoring 17 amino acids plus glucose. The two amino acids that were not accurately monitored were arginine and lysine, possibly due to their elution near the void volume of the column. The HPLC system was used to study variability in metabolism across different cell culture processes, as well as the effect of glucose and glutamine limitation on a single cell culture process. Chemometric analysis was used to draw statistically meaningful conclusions from the highly correlated, multivariate data set that resulted from these experiments. Using chemometrics, variation between processes was linked to differences in uptake rates of seven amino acids. Similarly, lactate concentration, cell density, and aspartate uptake rate were linked to glucose and glutamine limitation. The effect of nutrient limitation on glutamate, alanine, and ammonium was also considered.  相似文献   

3.
Hepatocyte heterogeneity in the metabolism of carbohydrates.   总被引:8,自引:0,他引:8  
K Jungermann  R G Thurman 《Enzyme》1992,46(1-3):33-58
Periportal and perivenous hepatocytes possess different amounts and activities of the rate-generating enzymes of carbohydrate and oxidative energy metabolism and thus different metabolic capacities. This is the basis of the model of metabolic zonation, according to which periportal cells catalyze predominantly the oxidative catabolism of fatty and amino acids as well as glucose release and glycogen formation via gluconeogenesis, and perivenous cells carry out preferentially glucose uptake for glycogen synthesis and glycolysis coupled to liponeogenesis. The input of humoral and nervous signals into the periportal and perivenous zones is different; gradients of oxygen, substrates and products, hormones and mediators and nerve densities exist which are important not only for the short-term regulation of carbohydrate metabolism but also for the long-term regulation of zonal gene expression. The specialization of periportal and perivenous hepatocytes in carbohydrate metabolism has been well characterized. In vivo evidence is provided by the complex metabolic situation termed the 'glucose paradox' and by zonal flux differences calculated on the basis of the distribution of enzymes and metabolites. In vitro evidence is given by the different flux rates determined with classical invasive techniques, e.g. in periportal-like and perivenous-like hepatocytes in cell culture, in periportal- and perivenous-enriched hepatocyte populations and in perfused livers during orthograde and retrograde flow, as well as with noninvasive techniques using miniature oxygen electrodes, e.g. in livers perfused in either direction. Differences of opinion in the interpretation of studies with invasive and noninvasive techniques by the authors are discussed. The declining gradient in oxygen concentrations, the decreasing glucagon/insulin ratio and the different innervation could be important factors in the zonal expression of the genes of carbohydrate-metabolizing enzymes. While it is clear that the hepatocytes sense the glucagon/insulin gradients via the respective hormone receptors, it is not known how they sense different oxygen tensions; the O2 sensor may be an oxygen-binding heme protein. The zonal separation of glucose release and uptake appears to be important for the liver to operate as a 'glucostat'. Thus, zonation of carbohydrate metabolism develops gradually during the first weeks of life, in part before and in part with weaning, when (in rat and mouse) the fat- and protein-rich but carbohydrate-poor nutrition via milk is replaced by carbohydrate-rich food. Similarly, zonation of carbohydrate metabolism adapts to longer lasting alterations in the need of a 'glucostat', such as starvation, diabetes, portocaval anastomoses or partial hepatectomy.  相似文献   

4.
Abstract: The cerebral metabolic rates for O2 and for glucose were measured in conscious, fasted male Fischer-344 rats at the ages of 3, 12, and 24 months, and cerebral blood flow was determined with 14C-iodoantipyrine. The metabolic rates for oxygen and glucose were obtained by multiplying blood flow by the O2 and glucose concentration differences, respectively, between blood in the femoral artery and in the superior sagittal sinus. Mean cerebral blood flow and the metabolic rates for oxygen and glucose did not differ significantly (p > 0.05) between 3 and 12 or between 12 and 24 months. Nor did the arteriovenous differences for O2 and for glucose change significantly with age. Because the superior sagittal sinus drains blood mainly from the cerebral cortex, the results indicate that average cerebral cortical oxidative metabolism, and the coupling ratios between the cerebral metabolic rate for oxygen and cerebral blood flow and between the cerebral metabolic rate for glucose and cerebral blood flow, do not change significantly with age in the Fischer-344 rat.  相似文献   

5.
Ammonia overloading was investigated during glucose and fructose metabolism in isolated hepatocytes under a variety of metabolic conditions. In all assay conditions, the glycolytic flux and oxygen uptake was not modified by 10 mM ammonia. In hepatocytes isolated from rats fed as libitum, the presence of ammonia caused a decrease in the production of lactate (pyruvate); this effect was not observed in anaerobic incubations, in hepatocytes isolated from starved animals, or in fetal hepatocytes. In spite of an overproduction of urea, ammonia detoxification also takes place by the synthesis of alanine, glutamate and aspartate. Addition of 1 mM aminooxyacetate, an inhibitor of aminotransferases, to the incubation medium prevents the formation of these amino acids, and also prevents the decrease of lactate in hepatocytes isolated from fed animals.  相似文献   

6.
Amino acid transport in isolated rat hepatocytes   总被引:13,自引:0,他引:13  
Summary Improvements in the collagenase perfusion techniques have made isolated rat hepatocytes a popular model in which to study hepatic function. Our knowledge of hepatic amino acid transport has been advanced as a result of this methodology. Translocation across the hepatocyte plasma membrane can, in some instances, represent the rate-limiting step in the overall metabolism of certain amino acids. Furthermore, regulation of amino acid uptake by hepatocytes appears to play a role in diabetes, and perhaps in malignant transformation. Comparisons between normal adult hepatocytes and several hepatoma cell lines show basic differences in amino acids transport. There are at least eight distinct systems in normal hepatocytes for transport of the amino acids. One of these, System A, transports the small neutral amino acids most efficiently and responds to a wide variety of hormones. Systems A and N exhibit enhanced uptake rates after the cells have been maintained in the absence of extracellular amino acids, a phenomenon termed adaptive control. Further studies using isolated hepatocytes will increase our basic understanding of membrane transport processes and their regulation.  相似文献   

7.
Age-related alterations and differences of weights and those of amino acid concentrations in the cerebrospinal fluid (CSF) were evaluated between Sprague Dawley (SD) rats and Wistar Kyoto (WKY) rats from eight to twenty weeks of age. The weights of SD rats were heavier than WKY rats at all ages. The age-related alterations of the CSF concentration of many amino acids within each strain were significant but showed no significant trend with age. Between the strains, the concentration differences of excitatory and inhibitory amino acids were not frequent although the concentrations of arginine, alanine and threonine were significantly higher in SD rats than in WKY rats. These results suggest that the different CSF concentrations of amino acids may relate to characteristics of rat strains.  相似文献   

8.
Brain astrocytes provide structural and metabolic support to surrounding cells during ischemia. Glucose and oxygen are critical to brain function, and glucose uptake and metabolism by astrocytes are essential to their metabolic coupling to neurons. To examine astrocyte metabolic response to hypoxia, cell survival and metabolic parameters were assessed in rat primary cortical astrocytes cultured for 3 weeks in either normoxia or in either 1 day or 3 weeks sustained hypoxia (5% O2). Although cell survival and proliferation were not affected by the mildly hypoxic environment, substantial differences in glucose consumption and lactate release after either acute or prolonged hypoxia suggest that astrocyte metabolism may contribute to their adaptation. Hypoxia over a period of 1 day increased glucose uptake, lactate release, and glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) expression, whereas hypoxia over a period of 3 weeks resulted in a decrease of all parameters. Furthermore, increased glucose uptake at 1 day of hypoxia was not inhibited by cytochalasin B suggesting the involvement of additional glucose transporters. We uncovered hypoxia-regulated expression of sodium-dependent glucose transporters (SGLT1) in astrocytes indicating a novel adaptive strategy involving both SGLT1 and GLUT1 to regulate glucose intake in response to hypoxia. Overall, these findings suggest that although increased metabolic response is required for the onset of astrocyte adaptation to hypoxia, prolonged hypoxia requires a shift to an energy conservation mode. These findings may contribute to the understanding of the relative tolerance of astrocytes to hypoxia compared with neurons and provide novel therapeutic strategies aimed at maintaining brain function in cerebral pathologies involving hypoxia.  相似文献   

9.
1. Heat output by suspensions of isolated rat hepatocytes was determined by using a modified batch-type microcalorimeter. 2. The ratio of O(2) uptake (determined polarographically) to heat output was used to assess the metabolic efficiency of isolated hepatocytes. 3. Cells from starved or fed rats incubated in either bicarbonate-buffered physiological saline containing gelatin, or bicarbonate-buffered physiological saline containing amino acids, serum albumin and glucose showed no significant difference with respect to the ratio of O(2) uptake to heat output. 4. For liver cells from 24h-starved rats, the addition of 10mm-dihydroxyacetone and 2.5mm-fructose significantly decreased the ratio of O(2) uptake to heat output from 1.94+/-0.05 in the controls to 1.52+/-0.04 and 1.54+/-0.01mumol/J respectively. 5. Glucagon (1mum), which slightly increased both O(2) uptake and heat output, did not significantly alter the ratio. 6. The addition of extracellular 10mm-NH(4)Cl and urease to provide an energetically wasteful cycle by ensuring hydrolysis of newly synthesized urea, lowered the ratio of O(2) uptake to heat output from 1.81+/-0.08 to 1.47+/-0.06mumol/J, indicating a reduced metabolic efficiency. 7. Metabolic efficiency in rats of different dietary regimen, age and genetically based obesity was also assessed. No differences in the ratio of O(2) uptake to heat output were found between liver cell suspensions prepared from rats maintained on colony diet and high-fat diet or sucrose-rich diet nor between animals ranging from 38 to 179 days of age. Comparison of the ratio of liver cell O(2) uptake to heat output between homozygote Zucker fa/fa obese rats and their lean littermates showed no significant difference. 8. It is concluded that the ratio of O(2) uptake to heat output for isolated hepatocytes is relatively constant unless perturbed by conditions that markedly enhance substrate cycling.  相似文献   

10.
Accurate quantification of cell specific rates and their uncertainties is of critical importance for assessing metabolic phenotypes of cultured cells. We applied two different methods of regression and error analysis to estimate specific metabolic rates from time‐course measurements obtained in exponentially growing cell cultures. Using simulated data sets to compute specific rates of growth, glucose uptake, and lactate excretion, we found that Gaussian error propagation from prime variables to the final calculated rates was the most accurate method for estimating parameter uncertainty. We incorporated this method into a MATLAB‐based software package called Extracellular Time‐Course Analysis (ETA), which automates the analysis workflow required to (i) compute cell specific metabolic rates and their uncertainties; (ii) test the goodness‐of‐fit of the experimental data to the regression model; and (iii) rapidly compare the results across multiple experiments. ETA was used to estimate the uptake or excretion rate of glucose, lactate, and 18 different amino acids in a B‐cell model of c‐Myc‐driven cancer. We found that P493‐6 cells with High Myc expression increased their specific uptake of glutamine, arginine, serine, lysine, and branched‐chain amino acids by two‐ to threefold in comparison to low Myc cells, but exhibited only modest increases in glucose uptake and lactate excretion. By making the ETA software package freely available to the scientific community, we expect that it will become an important tool for rigorous estimation of specific rates required for metabolic flux analysis and other quantitative metabolic studies. Biotechnol. Bioeng. 2013; 110: 1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

12.
Summary 1 We have previously demonstrated that arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study we initially investigated the influence of pretreatment with α-tocopherol and ascorbic acid on the effects produced by arginine on hippocampus energy metabolism. We also tested the effect of acute administration of arginine on various parameters of energy metabolism, namely glucose uptake, lactate release and on the activities of succinate dehydrogenase, complex II and cytochrome c oxidase in rat cerebellum, as well as the influence of pretreatment with α-tocopherol and ascorbic acid on the effects elicited by arginine on this structure.2. Sixty-day-old female Wistar rats were treated with a single i.p. injection of saline (control) or arginine (0.8 g/kg) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or α-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later.3. Results showed that arginine administration significantly increased lactate release and diminished glucose uptake and the activities of succinate dehydrogenase and complex II in rat cerebellum. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, pretreatment with α-tocopherol and ascorbic acid prevented the impairment of energy metabolism caused by hyperargininemia in cerebellum and hippocampus of rats.  相似文献   

13.
The steady-state metabolic parameters for a murine hybridoma cell line have been determined in continuous suspension culture over a wide range of dilution rates. Long-term adaption occurred over seven months in culture and resulted in lower glucose consumption rates, reduced lactate production, higher cell viability, and, consequently, growth rates more nearly matching the dilution rate. Antibody production rates decreased over the first two months and then remained stable for at least 75 days. The antibody production rate was not found to be growth associated. Steadystate amino acid uptake rates are presented for a wide range of growth rates.  相似文献   

14.
Rat islet isolation yield and function are donor strain dependent   总被引:1,自引:0,他引:1  
Effective rat islet isolation is pertinent for successful islet transplantation and islet studies in vitro. To determine which rat strain yields the highest number of pure and functional islets, four commonly used rat strains were compared with regard to islet yield, islet purity and islet function. Secretory responses were assessed by stimulation with glucose, and by stimulation with glucose plus 3-isobutyl-1-methylxanthine (IBMX). We show that rat islet function and isolation yield are donor strain dependent. Albino Oxford (AO) rats donated twice as many islets than Wistar, Lewis and Sprague Dawley (SD) rats. Stimulation with glucose plus IBMX resulted in an average five-fold increase of the stimulation index of AO, Lewis, Wistar and SD rats compared to stimulation with glucose only. AO islets had improved secretory responses after a one-week culture period, but required the addition of IBMX to glucose to elicit a distinguished stimulated insulin secretion after 2 days of culture. Islets from SD rats showed inferior results with regard to purity immediately after isolation and with regard to function after short- and after long-time culture. Because Lewis islets possessed the highest secretory response to glucose (without IBMX) immediately after isolation, Lewis rats may be preferred as islet donors for immediate use. The addition of IBMX to glucose for in vitro functional testing is recommended because it elicits high insulin secretory responses of islets regardless of the rat strain. AO rats are preferred for culture experiments since the number of experimental animals is reduced two-fold compared to Lewis, Wistar and SD rats.  相似文献   

15.
1. Isolated cat hepatocytes were established in monolayer culture, cell proteins labelled with tritiated leucine and the effects of amino acids and hormones on the regulation of intracellular protein breakdown were studied. 2. Mixtures of essential and non-essential amino acids inhibited the breakdown of long-lived protein, but when tested individually, amino acids except for tryptophan were ineffective. 3. The rate of breakdown of short-lived protein was not regulated by amino acids or hormones, a finding which was similar to that in rat liver cells. 4. The known stimulatory hormones of proteolysis in rat liver such as glucagon, dexamethasone and corticosteroids failed to enhance protein degradation in cat liver cells. 5. These results support the contention that the control of protein degradation in the cat is different to that in the rat and these differences may reflect the unusual protein metabolism of the cat.  相似文献   

16.
The consumption of protein supplements containing amino acids is increasing around the world. Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions, resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of Asp and Asn supplementation on glucose uptake in rats using three different glycogen concentrations. The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2‐deoxyglucose (a glucose analog) uptake by the muscle at maximal insulin concentrations. When animals had a medium glycogen concentration (consumed lard for 3 days), glucose uptake was higher in the supplemented group at sub‐maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensitivity with Asp and Asn supplementation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A peculiar phenomenon, differing from the response of mammalian cells, occurred when Chinook salmon embryo (CHSE) cells were passaged in the medium lacking of both glucose and glutamine. To elucidate metabolic mechanism of CHSE cells, the metabolism parameters, key metabolic enzymes, and ATP levels were measured at different glucose and glutamine concentrations. In the glutamine-free culture, hexokinase activity kept constant, and lactate dehydrogenase (LDH) activity decreased. This indicated that lack of glutamine did not expedite glucose consumption but made it shift to lower lactate production and more efficient energy metabolism. The results coincided with the experimental results of unaltered specific glucose consumption rate and decreased yield coefficients of lactate to glucose. In the glucose-free culture, simultaneous increase of glutaminase activity and of specific ammonia production rate suggested an increased flux into the glutaminolysis pathway, and increases of both glutamate dehydrogenase activity and yield coefficient of ammonia to glutamine showed an increased flux into deamination pathway. However, when glucose and glutamine were both lacking, the specific consumption rates of most of amino acids increased markedly, together with decrease of LDH activity, indicating that pyruvate derived from amino acids, away from lactate production, remedied energy deficiency. When both glucose and glutamine were absent, intracellular ATP contents and the energy charge remained virtually unaltered.Revisions requested 16 December 2004; Revisions received 24 January 2005  相似文献   

18.
Neutral amino acid transport in isolated rat pancreatic islets   总被引:1,自引:0,他引:1  
The neutral amino acid transport systems of freshly isolated rat pancreatic islets have been studied by first examining the transport of L-alanine and the nonmetabolizable analogue 2-(methylamino)isobutyric acid (MeAIB). By comparing the uptake of MeAIB and L-alanine for their pH dependency profile, choline and Li+ substitution for Na+, tolerance to N-methylation, and competition with other amino acids, the existence in pancreatic islets of both A and ASC amino acid transport systems was established. The systems responsible for the inward transport of five natural amino acids was studied using competition analysis and Na+ dependency of uptake. These studies defined three neutral amino acid transport systems: A and ASC (Na+-dependent) and L (Na+-independent). L-Proline entered rat islet cells mainly by system A; L-leucine by the Na+-independent system L. The uptake of L-alanine, L-serine, and L-glutamine was shared by systems ASC and L, the participation of system A being negligible for these three amino acids. An especially broad substrate specificity for systems L and ASC is therefore suggested for the rat pancreatic islet cells. The regulation of amino acid transport was also investigated in two conditions differing as to glucose concentration and/or availability, i.e. islets from fasted rats and islets maintained in tissue culture at high or low glucose concentrations. Neither alanine nor MeAIB transport was altered by fasting of the islet-donor rats. On the other hand, pancreatic islets maintained for 2 days in tissue culture at high (16.7 mM) glucose transported MeAIB at twice the rate of islets maintained at low (2.8 mM) glucose. Amino acid starvation of pancreatic islets during 11 h of tissue culture resulted in a 2-fold increase in MeAIB transport.  相似文献   

19.
Arteriovenous differences for several potential metabolic substrates were measured across the fundic wall of the stomach of rats that had been starved overnight. There was an uptake of glucose and D-3-hydroxybutyrate, but no significant arteriovenous differences for acetoacetate, pyruvate, non-esterified fatty acids and glycerol were apparent. Lactate output represented a substantial fraction of glucose uptake when the arterial lactate concentration was within the resting physiological range, but when the arterial lactate concentration was above 1.3 mM, lactate was taken up by the stomach. Stimulation of acid secretion by pentagastrin did not affect the value of arteriovenous differences. Thus blood flow to the fundic mucosa and substrate metabolism may be similarly enhanced by pentagastrin. It is concluded that metabolism of glucose and D-3-hydroxybutyrate, and to a lesser extent of glutamine and branched-chain amino acids [Anderson & Hanson (1983) Biochem. J. 210, 451-455], could supply energy to power acid secretion.  相似文献   

20.
Chloroquine (50 μm) is rapidly taken up by isolated hepatocytes in a temperature-dependent manner. It inhibits glucose synthesis from lactate, but not from pyruvate or dihydroxyacetone. The inhibition is reversed by lysine or ammonia but not by oleate or carnitine. Ammonia inhibits chloroquine uptake by the hepatocytes but lysine does not. Chloroquine also inhibits urea synthesis, the release of ninhydrin-reacting substances, the accumulation of amino acids, and the lactate-dependent accumulation of glutamate. Ethanol oxidation in the presence of lactate is also inhibited, and this too is reversed by lysine. Chloroquine increases the redox state of the cytosolic compartment, as evidenced by lactate-to-pyruvate ratios, of hepatocytes prepared from both 48-h fasted and meal-fed rats. The above findings are consistent with chloroquine entering the lysosomes of the hepatocytes and inhibiting proteolysis by raising the lysosomal pH. Isolated hepatocytes are deficient in amino acids and, chloroquine inhibition of proteolysis prevents replenishment of the amino acid pools. Thus, chloroquine prevents reconstitution of the malate-aspartate shuttle required for the movement of reducing equivalents into the mitochondrion during lactate gluconeogenesis, ethanol oxidation, and glycolysis. The metabolic competency of freshly isolated hepatocytes, therefore, depends on the replenishment of amino acid pools by lysosomal breakdown of endogenous protein. Furthermore, chloroquine uptake may be an index of lysosomal function with isolated hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号