首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Atport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4.43 or COL4A4. Serious changes in the G BM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new sub- group of FSGS patients resulting from heterozygous C01.4A3 mutations was identified. The mutations are relatively frequent in famiUes diagnosed with inherited forms of FSGS. Thus, we suggest screening for C01.4A3 mutations in familial FSGS patients.  相似文献   

2.
3.
Background: Gastric cancer (GC) metastasis determines the prognosis of patients, and exploring the molecular mechanism of GC metastasis is expected to provide a theoretical basis for clinical treatment. Recent studies have shown that extracellular matrix protein is closely related to GC metastasis. The present study aimed to explore the expression profile and role of COL5A2, as an extracellular matrix protein, in GC.Methods: The expression, overall survival, and progression-free survival data of COL5 family members were extracted from The Cancer Genome Atlas (TCGA) database, respectively. Weighted gene co-expression network analysis of the GSE62229 database was performed out to identify modules and associated genes.Results: COL5A2 was selected as our research target in the TCGA database, and was also verified in the GSE62229 and GSE15459 datasets. COL5A2 was up-regulated in GC tissues by paraffin immunohistochemistry and RT-qPCR. The prognosis of patients with low COL5A2 expression was better than that of patients with high COL5A2 expression. Scratch and migration experiments showed that knockdown of COL5A2 decreased the migration ability of gastric cancer cells compared with the control group. In vivo, mice with tail vein injection COL5A2 knockdown had fewer and smaller metastatic nodules in liver. GSEA results showed that the TCGA and GSE62229 samples were significantly enriched in several well-known cancer-related pathways, such as the TGF-β, MAPK, and JAK2 signaling pathways.Conclusion: COL5A2 was most closely related to advanced GC among COL5 family members. High COL5A2 expression is associated with a poor prognosis, and may be a novel therapeutic target for GC.  相似文献   

4.
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type Ⅰ collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) chains of type Ⅰ collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.  相似文献   

5.
Stickler syndrome type I (STL1, MIM 108300) is characterized by ocular, auditory, skeletal and orofacial manifestations. Nonsyndromic ocular STL1 (MIM 609508) characterized by predominantly ocular features is a subgroup of STL1, and it is inherited in an autosomal dominant manner. In this study, a novel variant c.T100>C (p.Cys34Arg) in COL2A1 related to a large nonsyndromic ocular STL1 family was identified through Exome sequencing (ES). Bioinformatics analysis indicated that the variant site was highly conserved and the pathogenic mechanism of this variant may involve in affected structure of chordin‐like cysteine‐rich (CR) repeats of ColIIA. Minigene assay indicated that this variant did not change alternative splicing of exon2 of COL2A1. Moreover, the nonsyndromic ocular STL1 family with 16 affected members showed phenotype variability and certain male gender trend. None of the family members had hearing loss. Our findings would expand the knowledge of the COL2A1 mutation spectrum, and phenotype variability associated with nonsyndromic ocular STL1. Search for genetic modifiers and related molecular pathways leading to the phenotype variation warrants further studies.  相似文献   

6.
7.
Although various intrinsic and extrinsic risk factors for anterior cruciate ligament (ACL) rupture have been identified, the exact aetiology of the injury is not yet fully understood. Type III collagen is an important factor in the repair of connective tissue, and certain gene polymorphisms may impair the tensile strength. The aim of this study was to examine the association of the COL3A1 rs1800255 polymorphism with ACL rupture in Polish male recreational skiers. A total of 321 male Polish recreational skiers were recruited for this study; 138 had surgically diagnosed primary ACL ruptures (ACL-injured group) and 183 were apparently healthy male skiers (control group – CON) who had no self-reported history of ligament or tendon injury. Both groups had a comparable level of exposure to ACL injury. Genomic DNA was extracted from the oral epithelial cells. All samples were genotyped on a real-time polymerase chain reaction instrument. The genotype distribution in the ACL-injured group was significantly different than in CON (respectively: AA=10.1 vs 2.2%, AG=22.5 vs 36.1, GG=67.4 vs 61.8%; p=0.0087). The AA vs AG+GG genotype of COL3A1 (odds ratio (OR)=5.05; 95% confidence interval (CI), 1.62-15.71, p=0.003) was significantly overrepresented in the ACL-injured group compared with CON. The frequency of the A allele was higher in the ACL-injured group (21.4%) compared with CON (20.2%), but the difference was not statistically significant (p=0.72). This study revealed an association between the COL3A1 rs1800255 polymorphism and ACL ruptures in Polish skiers.  相似文献   

8.

Introduction

Spondyloepiphyseal dysplasia congenita (SEDC) is an autosomal dominant skeletal dysplasia characterized by short stature, abnormal epiphyses, and flattened vertebral bodies. The condition occurs through a mutation in the COL2A1 gene that encodes the type II procollagen alpha1 chain (proalpha1 (II)).

Method and Results

We investigated nine affected individuals from four unrelated Chinese families with SEDC. We screened for COL2A1 gene mutations, and identified found four missense mutations (G447A, G456A, R789C and G1152D). The G447A, G456A and G1152D mutations are novel and the R789C mutation has been reported previously in several other studies with a strikingly similar phenotype.

Conclusions

Our study extends the mutation spectrum of SEDC and is helpful in early molecular diagnoses of SEDC.  相似文献   

9.
lncRNA COL1A2-AS1 (COL1A2 antisense RNA 1), a lncRNA overexpressed in hypertrophic scar, has been demonstrated to be involved in the hypertrophic scar formation. However, the mechanisms of lncRNA COL1A2-AS1 inhibiting the scar fibroblasts proliferation remains not well understood. In this study, we demonstrated that lncRNA COL1A2-AS1 was upregulated in hypertrophic scar tissue and fibroblasts, and suppressed fibroblasts proliferation by promoting Smad7 expression. Furthermore, we found that miR-21 was involved in lncRNA COL1A2-AS1-induced expression of Smad7, by which COL1A2-AS1 acted as endogenous sponge to adsorb miR-21 and in turn regulated Smad7 and a cascade of molecular to play a protective role in hypertrophic scar. In addition, overexpression of miR-21 attenuated COL1A2-AS1-mediated proliferation suppression of hypertrophic scar fibroblasts. In conclusion, our study demonstrated that COL1A2-AS1/miR-21/Smad pathway plays an important role in inhibiting hypertrophic scar formation, and suggested this novel pathway may be a new target for hypertrophic scar treatment.  相似文献   

10.
中国人COL2A1基因座的扩增片段长度多态性   总被引:1,自引:0,他引:1  
侯一平  敬一清 《遗传学报》1995,22(4):245-251
用聚合酶链式反应、高分辨聚丙烯酰胺凝胶水平电泳及银染技术对位于人类Ⅱ型胶原基因终止密码下游非转录区1.3kb处的可主数目串联重复育列进行了研究。制备了由人类不同基因型DNA混合而成的人类等位基因型参考物,根据实验结果进行了命名。  相似文献   

11.
Bone-formation related gene plays a critical role in bone loss induced by space microgravity, however the exact mechanism is unclear. In this study, we aim to investigate the effect of microgravity on the activity of α 1(I) collagen (COL1A1) gene promoter and the expression of osteoblast-related genes. COL1A1 promoter was digested by restriction enzymes resulting in three DNA fragments. The fragments were ligated with the enhanced green fluorescent protein report gene, and subcloned into expression vectors. ROS17/2.8 cells transfected by these vectors were screened by G418, and enhanced green fluorescent protein (EGFP) positive colonies were isolated and cultured under clinostat condition. EGFP and Collagen type I expression level were detected by fluorescence intensity analysis and immunocytochemistry methods respectively. The results showed that the expression of EGFP and collagen type I was increased 24 h, 48 h after the cells were cultured under stimulated microgravity, illustrating that the activity of COL1A1 promoter might be increased. In conclusion, osteoblasts can compensatively increase the expression of type I collagen by enhancing the activity of COL1A1 promoter under short-term simulated microgravity conditions.  相似文献   

12.

[Purpose]

The aim of our study was to investigate the association between COL5A1 genotype and Range of Motion as measured by the passive straight leg raise (SLR) and whole body join laxity (WBJL) in Asian population.

[Methods]

One hundred and seventy seven participants including Korean and Japanese college students (male = 109, female = 68) participated in the study. Each subject performed the passive straight leg raise and whole body join laxity test. Genotyping for the COL5A1 (rs 12722) polymorphism was performed using the TaqMan approach. The COL5A1 genotype exhibited a Hardy-Weinberg equilibrium distribution in our population.

[Results]

The physical parameters including height, weight, and BMI were higher in < 90° group than > 90° group. The SLR exhibited significant difference among the COL5A1 group. However, the WBJL did not differ significantly among the COL5A1 genotype, but significant difference was seen in CC genotype when compared to CT (2.99 ± 1.72) or TT (2.70 ± 1.52) genotype.

[Conclusion]

We concluded that COL5A1 gene polymorphism is associated with increased SLR ROM in Asian population.  相似文献   

13.
Post-operative progression and chemotherapy resistance are the main causes of treatment failure in glioma patients. There is a lack of ideal prediction models for post-operative glioma patient progression and drug sensitivity. We aimed to develop a prognostic model of parthanatos mRNA biomarkers for glioma outcomes. A total of 11 parthanatos genes were obtained from ParthanatosCluster database. ConsensusClusterPlus and R “Limma” package were used to cluster The Cancer Genome Atlas (TCGA)-glioma cohort and analyze the differential mRNAs. Univariate Cox regression analysis, random survival forest model, and least absolute shrinkage and selection operator (LASSO) regression analysis were used to determine the nine ParthanatosScore prognostic genes combination. ParthanatosScore was verified by 656 patients and 979 patients in TCGA and CGCA-LGG/GBM datasets. Differences in genomic mutations, tumor microenvironments, and functional pathways were assessed. Drug response prediction was performed using pRRophetic. Kaplan–Meier survival analysis was analyzed. Finally, COL8A1 was selected to evaluate its potential biological function and drug sensitivity of temozolomide and AZD3759 in glioma cells. ParthanatosScore obtained a combination of nine glioma prognostic genes, including CD58, H19, TNFAIP6, FTLP3, TNFRSF11B, SFRP2, LOXL1, COL8A1, and FABP5P7. In the TCGA-LGG/GBM dataset, glioma prognosis was poor in high ParthanatosScore. Low-score glioma patients were sensitive to AZD3759_1915, AZD5582_1617, AZD8186_1918, Dasatinib_1079, and Temozolomide_1375, while high-score patients were less sensitive to these drugs. Compared with HA cells, COL8A1 was significantly over-expressed in LN229 and U251 cells. Silencing COL8A1 inhibited the malignant characterization of LN229 and U251 cells. Temozolomide and AZD3759 also promoted parthanatos gene expression in glioma cells. Temozolomide and AZD3759 inhibited COL8A1 expression and cell viability and promoted apoptosis in glioma cells and PGM cells. ParthanatosScore can accurately predict clinical prognosis and drug sensitivity after glioma surgery. Silencing COL8A1 inhibited the malignant characterization. Temozolomide and AZD3759 inhibited COL8A1 expression and cell viability and promoted apoptosis and parthanatos gene expression, which is a target to improve glioma.  相似文献   

14.
The aim of our study was to investigate the effects of miR‐133a‐3p on human oral squamous cell carcinoma (OSCC) cells by regulating gene COL1A1. OSCC tissues, adjacent tongue epithelial tissues, the immortalized oral epithelial cell line HIOEC, and OSCC cell lines (CAL‐27, TCA‐8113, SCC‐4, SCC‐9, and SCC‐15) were used in this research. Quantitative real‐time PCR (RT‐qPCR) was employed to determine the expression of miR‐133a‐3p and COL1A1. Dual luciferase reporter gene assay and Western blot were applied to verify the binding relationship between miR‐133a‐3p and COL1A1. Functional assays were also conducted in this study, including CCK‐8 assay, colony formation assay, flow cytometry analysis as well as Transwell assay. MiR‐133a‐3p was found low‐expressed both in OSCC tissues and cells lines compared with normal tissues and cell line, respectively, whereas COL1A1 was just the opposite. The over‐expression of miR‐133a‐3p or the down‐regulation of COL1A1 suppressed the proliferation, invasion, and mitosis of OSCC cells, whereas simultaneous down‐regulation of miR‐133a‐3p and up‐regulation of COL1A1 led to no significant alteration of cell activities. MiR‐133a‐3p could inhibit the proliferation and migration of OSCC cells through directly targeting COL1A1 and reducing its expression. J. Cell. Biochem. 119: 338–346, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Effects of clinorotation on COL1A1- EGFP gene expression   总被引:6,自引:0,他引:6  
Itisnowwellestablishedthatspaceflightin-ducesbonelossafterlong-termexposuretomicro-gravity.Biochemicalstudiesshowedthatcontinuousboneloss[1,2]andmineralredistribution[3]inducedbyspaceflightwereassociatedwiththedecreasedos-teoblasticactivityanddifferentialfunction[4—6].Recentfindingssuggestthechangeintheexpressionofbone-formationrelatedgeneplaysanimportantroleintheprocessofdecreasedosteoblasticfunctionsin-ducedbyspaceflight.CollagentypeIexpressedthroughouttheprocessofosteoblasticproliferationa…  相似文献   

16.
Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-β signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-β signaling and related molecular pathways at distinct developmental stages, we silenced the expression of TGFB1, TGFB3, TGFBR2, CTGF, DNMT1, and DNMT3A in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method. Through Western blot, we analyzed the effects of the knockdowns of these genes on the level of the CTGF, TGFBR2, and DNMT3A proteins in both cell lines. In the in vitro assays, we observed that CTGF level was decreased after knockdown of DNMT1 in HDF-N but not in HDF-A. Similarly, the level of DNMT3A was decreased only in HDF-N after silencing of TGFBR2, TGFB3, or DNMT1. TGFBR2 level was lower in HDF-N after knockdown of TGFB3, DNMT1, or DNMT3A, but it was higher in HDF-A after TGFB1 silencing. The reduction of TGFBR2 after silencing of DNMT3A and vice versa in neonatal cells only suggests the developmental stage-specific interactions between these two genes. However, additional studies are needed to explain the dependencies between analyzed proteins.  相似文献   

17.

[Purpose]

The purpose of this study was to exam the association of body composition, flexibility, and injury risk to genetic polymorphisms including ACE ID, ACTN3 RX, and COL5A1 polymorphisms in ballet dancers in Korea.

[Methods]

For the purpose of this study, elite ballerinas (n = 97) and normal female adults (n = 203) aged 18 to 39 were recruited and these participants were tested for body weight, height, body fat, fat free mass, flexibility, injury risks on the joints and gene polymorphisms (ACE, ACTN3, COL5A1 polymorphism).

[Results]

As results, the ACE DD genotype in ballerinas was associated with higher body fat and percentage of body fat than the ACE II and ID genotypes (p < 0.05). In the study on the ACTN3 polymorphism and ballerinas, the XX genotype in ballerinas had lower body weight and lower fat-free mass than the RR and RX genotype (p < 0.005). Also, the means of sit and reach test for flexibility was lower in the ACTN3 XX genotype of ballerinas than the RR and RX genotype of ballerinas (p < 0.05). Among the sports injuries, the ankle injury of the XX-genotyped ballerinas was in significantly more prevalence than the RR and XX-genotyped ballerinas (p < 0.05). According to the odd ratio analysis, XX-genotyped ballerinas have the injury risk on the ankle about 4.7 (95% CI: 1.6~13.4, p < 0.05) times more than the RR and RX-genotyped ballerinas. Meanwhile, the COL5A1 polymorphism in ballerinas has no association with any factors including flexibility and injury risks.

[Conclusion]

In conclusion, ACE polymorphism and ACTN3 polymorphism were associated with ballerinas'' performance capacity; COL5A1 was not associated with any factors of performance of Ballerinas. The results suggested that the ACE DD genotype is associated with high body fat, the ACTN3 XX genotype is associated with low fat-free mass, low flexibility, and higher risk of ankle-joint injury.  相似文献   

18.
19.
Vascular Ehlers‐Danlos syndrome (vEDS) is a rare and severe hereditary connective tissue disease arising from a mutation in the type III collagen alpha I chain (COL3A1) gene, with a poor prognosis due to exceptional vascular ruptures and premature death. Herein, starting from a 36‐year‐old Chinese male patient with a complaint of upper abdominal pain, we collected clinical data of and performed a genetic analysis of a total of 20 family members. We identified two closely spaced COL3A1 missense variants in cis, p.Leu734Phe (c.2199_2200TC>AT) and p.Gly741Ser (c.2221G>A), as the cause of vEDS in this family. p.Gly741Ser, a glycine substitution mutation, has been previously reported, whereas p.Leu734Phe, a non‐glycine substitution mutation, is novel. We analysed their independent and combined effects on the COL3A1 level in transfected skin fibroblast cells by means of Western blotting. We found that both variants independently led to a reduced COL3A1 level and, when combined, led to an even more reduced COL3A1 level compared to the wild type. Thus, each missense variant can be independently classified as a pathogenic variant, albeit with a synergetic effect when occurring together. Moreover, our genetic findings provide an explanation for four previous sudden deaths and identified two high‐risk carriers in the family.  相似文献   

20.
CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3′-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号