共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Serhat Özaslan Yeliz Demir O. Irfan Küfrevioğlu Mehmet Çiftci 《Journal of biochemical and molecular toxicology》2017,31(11)
Glutathione S‐transferases (GSTs) are the superfamily of multifunctional detoxification isoenzymes and play important role cellular signaling. The present article focuses on the role of Cd2+, Cu2+, Zn2+, and Ag+ in vitro inhibition of GST. For this purpose, GST was purified from Van Lake fish (Chalcalburnus tarichii Pallas) gills with 110.664 EU mg?1 specific activity and 79.6% yield using GSH‐agarose affinity chromatographic method. The metal ions were tested at various concentrations on in vitro GST activity. IC50 values were found for Cd+2, Cu+2, Zn+2, Ag+ as 450.32, 320.25, 1510.13, and 16.43 μM, respectively. K i constants were calculated as 197.05 ± 105.23, 333.10 ± 152.76, 1670.21 ± 665.43, and 0.433 ± 0.251 μM, respectively. Ag+ showed better inhibitory effect compared with the other metal ions. The inhibition mechanisms of Cd2+ and Cu2+ were non‐competitive, whereas Zn2+ and Ag+ were competitive. Co2+, Cr2+, Pb2+, and Fe3+ had no inhibitory activity on GST. 相似文献
2.
Inhibition effects of pesticides on glutathione‐S‐transferase enzyme activity of Van Lake fish liver 下载免费PDF全文
Muhammet Serhat Özaslan Yeliz Demir Ömer Irfan Küfrevioğlu Şükrü Beydemir 《Journal of biochemical and molecular toxicology》2018,32(9)
Glutathione‐S‐transferases (GSTs) have a function in xenobiotic metabolism. They are a significant multifunctional family with a wide variety of catalytic activities. In the current study, we determined in vitro inhibition effects of 2,4‐dichlorophenoxyacetic acid dimethylamine salt (2,4‐D DMA), haloxyfop‐P‐methyl, glyphosate isopropylamine, dichlorvos, and λ‐cyhalothrin on purified GST. For this purpose, GST were purified from Van Lake fish (Chalcalburnus tarichii Pallas) liver with 29.25 EU mg?1 specific activity and 10.76% yield using GSH–agarose affinity chromatographic method. The pesticides were tested at various concentrations on in vitro GST activity. Ki constants were calculated as 0.17 ± 0.01, 0.25 ± 0.05, 3.72 ± 0.32, 0.42 ± 0.06, and 0.025 ± 0.004 mM, for 2,4‐D DMA, haloxyfop‐P‐methyl, glyphosate isopropylamine, dichlorvos, and λ‐cyhalothrin, respectively. λ‐Cyhalothrin showed a better inhibitory effect compared to the other pesticides. The inhibition mechanisms of λ‐cyhalothrin were competitive, while the other pesticides were noncompetitive. 相似文献
3.
Maryam S. Abunnaja Katsuhisa Kurogi Yasir I. Mohammed Yoichi Sakakibara Masahito Suiko Ezdihar A. Hassoun Ming‐Cheh Liu 《Journal of biochemical and molecular toxicology》2017,31(10)
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined. 相似文献
4.
5.
An enzyme, which possesses glutathione S‐transferase (GST) activity, has been found in the midgut of the saturniid moth, Samia cynthia pryeri. The enzyme was initially purified into homogeneity by ammonium sulphate fractionation, affinity chromatography, and ion‐exchange chromatography. The resulting enzyme revealed a single band with a molecular mass of 23 kDa by sodium dodecyl sulfate polyacrylamide electrophoresis under reduced conditions. When tested with 1‐chloro‐2,4‐dinitrobenzene, a universal substrate of GST, the purified remnants had an optimum pH of 8.0 for enzymatic activity, and was fairly stable at pH 5–9 and at temperatures below 40°C. The enzyme was also responsive to 4‐hydroxynonenal, a cytotoxic lipid‐peroxidation product. The present GST was inhibited by organophosphorus and pyrethroid insecticides including fenitrothion, permethrin and deltamethrin. 相似文献
6.
7.
8.
Benzyl isothiocyanate attenuates the hydrogen peroxide‐induced interleukin‐13 expression through glutathione S‐transferase P induction in T lymphocytic leukemia cells 下载免费PDF全文
Yue Tang Sho Naito Naomi Abe‐Kanoh Seiji Ogawa Shu Yamaguchi Beiwei Zhu Yoshiyuki Murata Yoshimasa Nakamura 《Journal of biochemical and molecular toxicology》2018,32(6)
We investigated the effect of benzyl isothiocyanate (BITC) on the hydrogen peroxide‐induced gene expression of a T‐helper‐2 cytokine, interleukin (IL)‐13, in T lymphocytic leukemia Jurkat cells. The 24‐h pretreatment of BITC significantly inhibited the IL‐13 expression enhanced by hydrogen peroxide. Although the BITC pretreatment did not change the enhanced level of the phosphorylated c‐Jun N‐terminal kinase (JNK), it significantly inhibited the nuclear translocation of c‐Jun induced by hydrogen peroxide. BITC also increased the protein expression of glutathione S‐transferase (GST) isozymes, GSTP1/2, as well as the total GST activity. A GSTP1/2‐specific inhibitor, 6‐(7‐nitro‐2,1,3‐benzoxadiazol‐4‐ylthio)hexanol (NBDHEX), significantly counteracted the inhibitory effect of BITC on the hydrogen peroxide‐enhanced IL‐13 upregulation as well as the c‐Jun nuclear translocation. Taken together, these results suggested that BITC inhibits the oxidative stress‐mediated IL‐13 mRNA expression, possibly through interference of the c‐Jun phosphorylation by GSTP. 相似文献
9.
Insect glutathione S‐transferases (GSTs) play important roles in detoxifying toxic compounds and eliminating oxidative stress caused by these compounds. In this study, detoxification activity of the epsilon GST SlGSTE1 in Spodoptera litura was analyzed for several insecticides and heavy metals. SlGSTE1 was significantly up‐regulated by chlorpyrifos and xanthotoxin in the midgut of S. litura. The recombinant SlGSTE1 had Vmax (reaction rate of the enzyme saturated with the substrate) and Km (michaelis constant and equals to the substrate concentration at half of the maximum reaction rate of the enzyme) values of 27.95 ± 0.88 μmol/min/mg and 0.87 ± 0.028 mmol/L for glutathione, respectively, and Vmax and Km values of 22.96 ± 0.78 μmol/min/mg and 0.83 ± 0.106 mmol/L for 1‐chloro‐2,4‐dinitrobenzene, respectively. In vitro enzyme indirect activity assay showed that the recombinant SlGSTE1 possessed high binding activities to the insecticides chlorpyrifos, deltamethrin, malathion, phoxim and dichloro‐diphenyl‐trichloroethane (DDT). SlGSTE1 showed higher binding activity to toxic heavy metals cadmium, chromium and lead than copper and zinc that are required for insect normal growth. Western blot analysis showed that SlGSTE1 was induced in the gut of larvae fed with chlorpyrifos or cadmium. SlGSTE1 also showed high peroxidase activity. All the results together indicate that SlGSTE1 may play an important role in the gut of S. litura to protect the insect from the toxic effects of these compounds and heavy metals. 相似文献
10.
Hideo Ochiai Hiroshi Eguchi Shunsuke Noguchi Yutaro Hayashi Hideaki Nishino Masaru Kawamura Chau H. Wu 《Journal of molecular recognition : JMR》2013,26(1):32-37
Glutathione S‐transferase (GST) was found to complex with the Na+,K+‐ATPase as shown by binding assay using quartz crystal microbalance. The complexation was obstructed by the addition of antiserum to the α‐subunit of the Na+,K+‐ATPase, suggesting the specificity of complexation between GST and the Na+,K+‐ATPase. Co‐immunoprecipitation experiments, using the anti‐α‐subunit antiserum to precipitate the GST‐Na+,K+‐ATPase complex and then using antibodies specific to an isoform of GST to identify the co‐precipitated proteins, revealed that GSTπ was complexed with the Na+,K+‐ATPase. GST stimulated the Na+,K+‐ATPase activity up to 1.4‐fold. The level of stimulation exhibited a saturable dose–response relationship with the amount of GST added, although the level of stimulation varied depending on the content of GSTπ in the lots of GST received from supplier. The stimulation was also obtained when recombinant GSTπ was used, confirming the results. When GST was treated with reduced glutathione, GST activity was greatly stimulated, whereas the level of stimulation of the Na+,K+‐ATPase activity was similar to that when untreated GST was added. When GST was treated with H2O2, GST activity was greatly diminished while the stimulation of the Na+,K+‐ATPase activity was preserved. The results suggest that GSTπ complexes with the Na+,K+‐ATPase and stimulates the latter independent of its GST activity. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Activity of glutathione S‐transferase and esterase enzymes in Helicoverpa armigera (Hübner) after exposure to entomopathogenic fungi 下载免费PDF全文
Muhammad Bilal Shoaib Freed Saleh Muhammad Muhammad Zubair Ashraf Muhammad Bismillah Khan 《Entomological Research》2018,48(4):279-287
Helicoverpa armigera, a polyphagous insect of crops and vegetables, is acquiring resistance against many commercial insecticides. The present study shows variations in the activity of two detoxification enzymes, namely esterase and glutathione S‐transferase (GST), in H. armigera after exposure to different isolates of entomopathogenic fungi. After treatment of larvae with the different isolates (Day 0), samples were collected on three days (Days 3, 5 and 7) for enzyme analysis. High GST activity was found in samples of hemolymph, intestine and fat bodies of H. armigera following treatment with Beauveria bassiana (isolate Bb‐08), Metarhizium anisopliae (isolates Ma‐11.1 and Ma‐4.1), and Isaria fumosorosea (isolates If‐02 and If‐2.3). High esterase activity was recorded in samples of the intestine and fat bodies on various days after treatment, whereas increased esterase activity in hemolymph was noted only in samples from Day 5 after treatment with M. anisopliae (Ma‐4.1). The detection of high GST and esterase activity demonstrates the possibility of the development of resistance against these microbial control agents in H. armigera. 相似文献
12.
13.
Xiao‐Xiao Ma Yong‐Liang Jiang Yong‐Xing He Rui Bao Yuxing Chen Cong‐Zhao Zhou 《EMBO reports》2009,10(12):1320-1326
Glutathione‐S‐transferases (GSTs) are ubiquitous detoxification enzymes that catalyse the conjugation of electrophilic substrates to glutathione. Here, we present the crystal structures of Gtt2, a GST of Saccharomyces cerevisiae, in apo and two ligand‐bound forms, at 2.23 Å, 2.20 Å and 2.10 Å, respectively. Although Gtt2 has the overall structure of a GST, the absence of the classic catalytic essential residues—tyrosine, serine and cysteine—distinguishes it from all other cytosolic GSTs of known structure. Site‐directed mutagenesis in combination with activity assays showed that instead of the classic catalytic residues, a water molecule stabilized by Ser129 and His123 acts as the deprotonator of the glutathione sulphur atom. Furthermore, only glycine and alanine are allowed at the amino‐terminus of helix‐α1 because of stereo‐hindrance. Taken together, these results show that yeast Gtt2 is a novel atypical type of cytosolic GST. 相似文献
14.
S. A. Sheweita N. Mousa H. M. Al‐Masry 《Journal of biochemical and molecular toxicology》2008,22(6):389-395
The present study investigated the protective effect of gossypol, selenium, zinc, or glutathione (GSH) against dimethylnitrosamine (DMN)‐induced hepatotoxicity in the livers of male mice. The expression and the activity of glutathione S‐transferase (GST), levels of GSH, and free radicals (malondialdehyde (MDA)), as well as the activity of glutathione reductase were determined after the treatment of mice for seven consecutive days with low or high doses of gossypol, selenium, zinc, or GSH. In experimental groups, DMN was administered as a single dose for 2 h after the repeated dose treatments of mice for seven consecutive days with each antioxidant. DMN reduced the expression and inhibited the activity of GST. However, repeated treatments of mice with low‐dose gossypol or high dose of either selenium or GSH followed by a single dose of DMN induced the expression and the activity of GST. In contrast, low‐dose treatments of mice with zinc, selenium, or GSH followed by a single dose of DMN reduced the expression and the activity of GST compared to either control or DMN‐treated groups. In addition, high‐dose treatment with either gossypol or selenium markedly induced the levels of GSH compared to either control or DMN‐treated groups. Interestingly, pretreatment of mice with high dose of either gossypol or selenium for seven consecutive days followed by a single dose of DMN decreased the levels of MDA, whereas DMN induced such levels. It is concluded that high dose of either gossypol or selenium is a stronger protector than zinc and GSH in ameliorating the toxic effects of DMN. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:389–395, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20255 相似文献
15.
Ragaa R. Hamed Tahany M. Maharem Rasha A. Guneidy Manal A. Emam Ghada S. A. Abdel Karim 《Physiological Entomology》2019,44(3-4):187-199
Focus on the development of botanical insecticides such as polyphenols may represent an alternative method to chemical control. In the present study, total glutathione concentration and its related antioxidant enzymes in foregut, midgut, hindgut and fat body homogenates of the desert locust Schistocerca gregaria are examined. Glutathione S‐transferase (GST) activity exhibits a significantly higher value in fat bodies compared with other tissues. A simple and reproducible procedure for the purification of S. gregaria fat body GST is established and the purified enzyme is shown to be homogenous. The purified GST displays a typical Michaelis behaviour with respect to its substrates. Characterization of the GST, including optimum pH, substrate specificity and inhibitor effects, is carried out. The ability of some flavonoids to inhibit S. gregaria fat body GST activity is examined. High‐performance liquid chromatography analysis indicates that the major components in Glycyrrhiza glabra roots are 18α‐glycyrrhetinic acid, quercetin and rutin, and the major components in Hibiscus sabdariffa calyx are cyanidin 3‐O‐glucoside chloride and delphinidin. Quercetin and delphinidin chloride exhibit strong GST inhibition and the inhibition type is determined for both. Rutin shows a smaller inhibitory effect, whereas 18α‐glycyrrhetinic acid and cyanidin have no effect. Inhibition of S. gregaria fat body GST activity would be expected to prevent, or at least delay, the development of resistance to chemical pesticides. Among the examined levels of the antioxidant enzymes, total glutathione concentration and its related enzymes in foregut, midgut, hindgut and fat body crude homogenates of S. gregaria GST activity exhibit a significantly higher value in fat bodies compared with other tissues. Some flavonoids that are detected in H. sabdariffa calyx and G. glabra root extracts are the most effective inhibitors of the purified S. gregaria fat body GST activity. Inhibition of S. gregaria fat body GST activity by quercetin and delphinidin (major compounds detected by HPLC) would be expected to prevent, or at least delay, the development of resistance to chemical pesticides. 相似文献
16.
17.
18.
Molecular cloning and characterization of a sigma‐class glutathione S‐Transferase from the freshwater mussel Hyriopsis cumingii
下载免费PDF全文
A full‐length cDNA of a sigma‐like glutathione S‐transferase (GST) was identified from Hyriopsis cumingii (HcGSTS). The deduced amino acid sequence of HcGSTS was found to comprise 203 amino acid residues and to contain the distinct highly conserved glutathione binding site of N‐terminal and the relatively diverse substrate binding site of C‐terminal. Alignment analysis and phylogenetic relationship suggested that the HcGSTS is a sigma‐class GST. The mRNA of HcGSTS was constitutively expressed in all tested tissues, the strongest expression being in the hepatopancreas. The mRNA expression of HcGSTS was significantly up‐regulated (P < 0.05) in all assessed tissues after stimulation of the mussels with peptidoglycan (PGN) and LPS, the only exception being when the gills were challenged with PGN. The expression of HcGSTS mRNA in kidney and foot was also significantly up‐regulated (P < 0.05) by microcystin‐LR. Recombinant HcGSTS exhibited high activity towards the substrate 1‐chloro‐2,4‐dinitrobenzene. The optimal pH was 8.0 and temperature 35 °C. 相似文献
19.
Ae Kyung Park Jin Ho Moon Eun Hyuk Jang Hyun Park In Young Ahn Ki Seog Lee Young Min Chi 《Proteins》2013,81(3):531-537
Glutathione‐S‐transferases have been identified in all the living species examined so far, yet little is known about their function in marine organisms. In a previous report, the recently identified GST from Antarctic bivalve Laternula elliptica (LeGST) was classified into the rho class GST, but there are several unique features of LeGST that may justify reclassification, which could represent specific shellfish GSTs. Here, we determined the crystal structure of LeGST, which is a shellfish specific class of GST. The structural analysis showed that the relatively open and wide hydrophobic H‐site of the LeGST allows this GST to accommodate various substrates. These results suggest that the H‐site of LeGST may be the result of adaptation to their environments as sedentary organisms. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
20.
Indalecio Quesada‐Soriano Lorien J. Parker Alessandra Primavera Juan M. Casas‐Solvas Antonio Vargas‐Berenguel Carmen Barón Craig J. Morton Anna Paola Mazzetti Mario Lo Bello Michael W. Parker Luis García‐Fuentes 《Protein science : a publication of the Protein Society》2009,18(12):2454-2470
The effect of the Y108V mutation of human glutathione S‐transferase P1‐1 (hGST P1‐1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 → Val resulted in a 3D‐structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H‐site) and glutathione binding site (G‐site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H‐site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (Kd ~ 0.5 μM) when compared with those of the parent compounds, K ~ 13 μM, K ~ 25 μM. The EA moiety of the conjugate binds in the H‐site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the ΔCp values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information. 相似文献