首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We recently demonstrated that HepaRG cells encapsulated into 1.5% alginate beads are capable of self‐assembling into spheroids. They adequately differentiate into hepatocyte‐like cells, with hepatic features observed at Day 14 post‐encapsulation required for external bioartificial liver applications. Preliminary investigations performed within a bioreactor under shear stress conditions and using a culture medium mimicking acute liver failure (ALF) highlighted the need to reinforce beads with a polymer coating. We demonstrated in a first step that a poly‐l ‐lysine coating improved the mechanical stability, without altering the metabolic activities necessary for bioartificial liver applications (such as ammonia and lactate elimination). In a second step, we tested the optimized biomass in a newly designed perfused dynamic bioreactor, in the presence of the medium model for pathological plasma for 6 h. Performances of the biomass were enhanced as compared to the steady configuration, demonstrating its efficacy in decreasing the typical toxins of ALF. This type of bioreactor is easy to scale up as it relies on the number of micro‐encapsulated cells, and could provide an adequate hepatic biomass for liver supply. Its design allows it to be integrated into a hybrid artificial/bioartificial liver setup for further clinical studies regarding its impact on ALF animal models.  相似文献   

2.
Objectives: Non‐alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in the United States and is prevalent in morbidly obese patients. While weight loss and treatment of risk factors are recommended, the reported effects of bariatric surgery on NAFLD are mixed. Research Methods and Procedures: We examined liver histology at the time of Roux‐en‐Y gastric bypass surgery and at elective incisional hernia repair after weight loss for 16 patients at one center. Slides were read by one pathologist, blinded to clinical data, using the Brunt criteria. Clinical and laboratory data were extracted from chart review. Alcohol use was ascertained by two interviews. Results: At baseline, the mean age was 44 years, 50% were women, 88% were white, and the mean BMI was 51 kg/m2. None had significant alcohol use. On initial biopsy, all patients showed steatosis, 94% had inflammation, 88% had ballooning degeneration, 88% had perisinusoidal fibrosis, and 81% had portal fibrosis. The mean time between the two biopsies was 305 ± 131 (SD) days. The mean weight loss was 118 ± 29 lb. Steatosis improved in 15 of 16 patients, with resolution in 13. Twelve of 15 patients with inflammation at baseline showed improvement, and 12 of 14 showed less ballooning. Six of 14 patients with perisinusoidal fibrosis and 6 of 13 with portal fibrosis showed improvement. No patient had worsening of steatosis, inflammation, ballooning, or fibrosis. Discussion: Our study shows improvement in all of the histological features of NAFLD after Roux‐en‐Y gastric bypass surgery—induced weight loss, despite significant histopathology at baseline and substantial weight loss.  相似文献   

3.
4.
5.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

6.
Pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not clear. In this study we aimed to identify proteins involved in NAFLD development in free fatty acids (FFA)‐induced hepatosteatotic cells and in human liver biopsies. Steatosis was induced by incubating a normal human hepatocyte‐derived cell line L‐02 with FFA. Differentially expressed proteins in the steatotic cells were analyzed by two‐dimensional gel electrophoresis‐based proteomics. Involvement of one of the up‐regulated proteins in steatosis was characterized using the RNA interference approach with the steatotic cells. Protein expression levels in liver biopsies of patients with NAFLD were assessed by immunohistochemistry. Proteomic analysis of L‐02 steatotic cells revealed the up‐regulation of ERp57, a condition not previously implicated in NAFLD. Knockdown of ERp57 expression with siRNA significantly reduced fat accumulation in the steatotic cells. ERp57 expression was detected in 16 out of 17 patient biopsies and correlated with inflammation grades or fibrosis stages, while in 5 normal biopsies ERp57 expression was not detectable in hepatocytes. In conclusion, ERp57 was up‐regulated in FFA‐induced steatotic hepatic cells and in NAFLD patient livers and demonstrated steatotic properties in cultured cells. Further investigations are warranted to verify the involvement of ERp57 in NAFLD development. J. Cell. Biochem. 110: 1447–1456, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Proliferating hepatic stellate cells (HSCs) respond to liver damage by secreting collagens that form fibrous scar tissue, which can lead to cirrhosis if in appropriately regulated. Advancement of microRNA (miRNA) hepatic therapies has been hampered by difficulties in delivering miRNA to damaged tissue. However, exosomes secreted by adipose‐derived mesenchymal stem cells (ADSCs) can be exploited to deliver miRNAs to HSCs. ADSCs were engineered to overexpress miRNA‐181‐5p (miR‐181‐5p‐ADSCs) to selectively home exosomes to mouse hepatic stellate (HST‐T6) cells or a CCl4‐induced liver fibrosis murine model and compared with non‐targeting control Caenorhabditis elegans miR‐67 (cel‐miR‐67)‐ADSCs. In vitro analysis confirmed that the transfer of miR‐181‐5p from miR‐181‐5p‐ADSCs occurred via secreted exosomal uptake. Exosomes were visualized in HST‐T6 cells using cyc3‐labelled pre‐miRNA‐transfected ADSCs with/without the exosomal inhibitor, GW4869. The effects of miRNA‐181‐5p overexpression on the fibrosis associated STAT3/Bcl‐2/Beclin 1 pathway and components of the extracellular matrix were assessed. Exosomes from miR181‐5p‐ADSCs down‐regulated Stat3 and Bcl‐2 and activated autophagy in the HST‐T6 cells. Furthermore, the up‐regulated expression of fibrotic genes in HST‐T6 cells induced by TGF‐β1 was repressed following the addition of isolated miR181‐5p‐ADSC exosomes compared with miR‐67‐ADSCexosomes. Exosome therapy attenuated liver injury and significantly down‐regulated collagen I, vimentin, α‐SMA and fibronectin in liver, compared with controls. Taken together, the effective anti‐fibrotic function of engineered ADSCs is able to selectively transfer miR‐181‐5p to damaged liver cells and will pave the way for the use of exosome‐ADSCs for therapeutic delivery of miRNA targeting liver disease.  相似文献   

8.
The use of quail meat and eggs has made this animal important in recent years, with its low cost and high yields. Glutathione S‐transferases (GST, E.C.2.5.1.18) are an important enzyme family, which play a critical role in detoxification system. In our study, GST was purified from quail liver tissue with 47.88‐fold purification and 12.33% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by SDS‐PAGE method and showed a single band. In addition, inhibition effects of (3aR,4S,7R,7aS)‐2‐(4‐((E)‐3‐(aryl)acryloyl)phenyl)‐3a,4,7,7a‐tetrahydro‐1H‐4,7methanoisoindole‐1,3(2H)‐dion derivatives ( 1a–g ) were investigated on the enzyme activity. The inhibition parameters (IC50 and Ki values) were calculated for these compounds. IC50 values of these derivatives ( 1a–e ) were found as 23.00, 15.75, 115.50, 10.00, and 28.75 μM, respectively. Ki values of these derivatives ( 1a–e ) were calculated in the range of 3.04 ± 0.50 to 131.50 ± 32.50 μM. However, for f and g compounds, the inhibition effects on the enzyme were not found.  相似文献   

9.
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.  相似文献   

10.
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL‐17A and proliferative cytokine IL‐22 remains unclear. Here, numbers of IL‐22‐ and IL‐17A‐producing Th cells and cytokine concentrations in 30 patients with CCA and long‐term liver fluke infection, 40 patients with liver‐fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT‐PCR. Immunohistochemical staining showed weaker expression of IL‐22 and IL‐17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL‐22‐producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL‐17A‐producing T helper cells. ELISA revealed plasma concentrations of IL‐22 were 1.3‐fold higher in patients with CCA than in those without it and 4.6‐fold higher than in controls (P < 0.001). Plasma concentrations of IL‐17A were 2.5‐fold higher in patients with CCA than in those without it, and 21‐fold higher than in controls (P < 0.001). Amounts of IL‐22 and IL‐17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4+CD45RO+ T cells producing IL‐22 correlated with proportions producing IL‐17A (r = 0.759; P < 0.001), and plasma concentrations of IL‐22 correlated with those of IL‐17A (r = 0.726; P < 0.001). These results suggest that both IL‐17A and IL‐22 affect development of CCA related to liver fluke infection.
  相似文献   

11.
12.
Acute liver failure (ALF) is a severe consequence of abrupt hepatocyte injury and has lethal outcomes. Three toll‐like receptor agonists, including polyinosinic‐polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS), and cytosine‐phosphate‐guanine (CpG) DNA, cause acute and severe hepatitis, respectively, in D‐galactosamine (D‐GalN)‐sensitized mice. However, the molecular differences among three ALF models (LPS/D‐GalN, poly(I:C)/D‐GalN, and CpG DNA/D‐GalN), are unclear. Here, tandem mass tag based quantitative proteomic analyses of three ALF mouse models are performed. 52 common differentially expressed proteins (DEPs) are identified, in three ALF groups, compared to the control. Gene ontology analyses show that among the common DEPs, ten proteins are involved in immune system process, and 39 proteins in metabolic process. Among 80,195, and 23 specifically‐expressed proteins in poly(I:C)/D‐GalN, LPS/D‐GalN, and CpG DNA/D‐GalN groups, LPS/D‐GalN‐specific proteins are mostly distributed in the endoplasmic reticulum and more enriched in metabolic pathways, whereas poly (I:C)/D‐GalN‐specific proteins are mainly in the membrane and CpG DNA/D‐GalN‐specific proteins are related to the ribosome structural composition. In conclusion, the common and specific DEPs in three ALF mouse models at molecular level are identified; and determined a close‐to‐complete reference map of mouse liver proteins which will be useful for clinical diagnosis and treatment of liver failure in humans.  相似文献   

13.
Paradoxically, not only proteinases but also their inhibitors can correlate with bad prognosis of cancer patients, underlining the evolving concept of the protease web as the complex interplay between proteinases, their inhibitors and effector molecules. Elevated levels of tissue inhibitor of metalloproteinases‐1 (TIMP‐1) render the liver more susceptible to metastasis by triggering urokinase plasminogen activator (uPA) expression as well as hepatocyte growth factor (HGF) signalling, thereby leading to the fatal scattered infiltration of metastasizing tumour cells throughout the parenchyma of the target organ. Here, we investigated whether host uPA is a crucial protagonist for the TIMP‐1‐induced modulation of a pro‐metastatic microenvironment in the liver. Indeed, in livers of uPA‐ablated mice elevated TIMP‐1 levels did not trigger HGF signalling and did not promote metastasis of a murine T‐lymphoma cell line. In contrast, lack of tumour cell‐derived uPA induced by gene silencing did not interfere with this pro‐metastatic pathway. Furthermore, host uPA was necessary for the recruitment of neutrophilic granulocytes and the associated increase of HGF in livers with elevated TIMP‐1 levels. This newly identified co‐operation between TIMP‐1 and host uPA suggests that therapies, simultaneously interfering with pro‐ and anti‐proteolytic pathways may be beneficial for patients with metastatic disease.  相似文献   

14.
Southern stingrays, Dasyatis americana, are a well‐represented elasmobranch species in public aquaria and other facilities throughout the world. This study was conducted at a facility that experienced some mortality and replenished the collection with wild‐caught stingrays. A common necropsy finding among the stingrays was a small, dark liver. The objectives of this study were to assess the reliability of an ultrasound‐guided technique for establishing a liver‐to‐coelom ratio by calculating the approximate length of the liver with respect to the coelomic cavity length and then to compare ratios between acclimated captive and wild‐caught stingrays. The ultrasound validation phase of the study measured the distance from the caudal margin of the liver to the pelvic cartilaginous girdle and compared it to the actual distance measured during the necropsy or surgery. There was no significant difference found between the ultrasound and actual distance measurements (P = 0.945). This technique was then used to establish liver‐to‐coelom ratios and compare two groups of stingrays, presumably under different metabolic states at different periods. Liver‐to‐coelom ratios were established during initial examinations as well as 8 months after cohabitation in a touch pool exhibit. There were significant differences in liver‐to‐coelom ratios between the two stingray groups at introduction (median difference = 30.9%, P = 0.007) and after 8 months (median difference = 20.5%, P = 0.008). There were also significant differences in the liver‐to‐coelom ratios within each group at introduction and at 8 months (acclimated group median difference = 20.4%, P = 0.018; wild‐caught group median difference 31%, P = 0.008). Zoo Biol. 32:104‐111, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
Bioartificial livers (BALs) are bioreactors containing liver cells that provide extracorporeal liver support to liver‐failure patients. Theoretically, the plasma perfusion flow rate through a BAL is an important determinant of its functionality. Low flow rates can limit functionality due to limited substrate availability, and high flow rates can induce cell damage. This hypothesis was tested by perfusing the AMC‐BAL loaded with the liver cell line HepaRG at four different medium flow rates (0.3, 1.5, 5, and 10 mL/min). Hepatic functions ammonia elimination, urea production, lactate consumption, and 6β‐hydroxylation of testosterone showed 2–20‐fold higher rates at 5 mL/min compared to 0.3 mL/min, while cell damage remained stable. However, at 10 mL/min cell damage was twofold higher, and maximal hepatic functionality was not changed, except for an increase in lactate elimination. On the other hand, only a low flow rate of 0.3 mL/min allowed for an accurate measurement of the ammonia and lactate mass balance across the bioreactor, which is useful for monitoring the BAL's condition during treatment. These results show that (1) the functionality of a BAL highly depends on the perfusion rate; (2) there is a universal optimal flow rate based on various function and cell damage parameters (5 mL/min for HepaRG‐BAL); and (3) in the current set‐up the mass balance of substrate, metabolite, or cell damage markers between in‐and out‐flow of the bioreactor can only be determined at a suboptimal, low, perfusion rate (0.3 mL/min for HepaRG‐BAL). Biotechnol. Bioeng. 2012; 109: 3182–3188. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short‐term insulin‐induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg?1). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L‐alanine (5 mM), L‐lactate (2 mM), L‐glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L‐lactate and pyruvate production from L‐alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L‐lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L‐glutamine than livers from COG rats and, in the IIH rats, the production of glucose from L‐glutamine was higher than that from L‐alanine. The higher glucose production in livers from the IIH group, when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together, the results suggest that L‐glutamine is better than L‐alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号