首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teng Y  Zhang H  Liu R 《Molecular bioSystems》2011,7(11):3157-3163
4-Aminoantipyrine (AAP) is scarcely administered as an analgesic drug because of the potential side effects. The residue of AAP in the environment possesses a potential threat to human health. In this article, the binding mode of AAP with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods. AAP can interact with CAT to form an AAP-CAT complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that AAP could spontaneously bind with CAT through electrostatic forces with one binding site. Molecular docking results revealed that AAP bound into the CAT central cavity. UV-visible absorption, synchronous fluorescence and circular dichroism (CD) results provide data concerning conformational and some microenvironmental changes of CAT. Furthermore, the binding of AAP can inhibit CAT activity in erythrocytes. The present study provides direct evidence at a molecular level to show that exposure to AAP could induce changes in the enzyme CAT structure and function. The estimated methods in this work can be applied to characterize interactions of enzyme systems and other pollutants and drugs.  相似文献   

2.
苯并(a)芘对大弹涂鱼肝脏过氧化氢酶活性的影响   总被引:9,自引:0,他引:9  
过氧化氢酶 (CAT)是生物体内一种含巯基 ( -SH)的抗氧化酶 ,可与谷胱甘肽过氧化物酶一起 ,清除超氧化物歧化酶歧化超氧阴离子自由基(O2 - )产生的过氧化氢 (H2 O2 ) ,进而阻断可产生活性极高的羟自由基 (OH)的Haber Weiss反应 :M O2 - H2 O2 →M2 OH OH O2 (M 为金属离子 ) ,因而在生物体的抗氧化防御系统中占有重要地位[1 2 ] 。研究表明 ,包括CAT在内的抗氧化防御系统的成分可由于氧化污染的胁迫而发生改变 ,尝试以这些抗氧化防御系统成分的变化作为氧化胁迫的生物指标的研究正在成为毒理学研究的…  相似文献   

3.
Maltol is a flavor additive that is widely used in the daily diet of humans, and its biosafety attention is concomitantly increasing. Catalase (CAT) is an antioxidant enzyme to maintain homeostasis in the tissue's environment of human body and protect cells from oxidative damages. The adverse effects of maltol to CAT activity within mouse hepatocytes as well as the structural and functional changes of CAT on molecular level were investigated by multiple spectroscopy techniques, enzyme activity experiments, and molecular docking. Results suggested that when the maltol concentrations reached to 8 × 10?5 mol L?1, the viability of hepatocytes decreased to 93%, and CAT activity was stimulated by maltol to 111% than the control group after exposure for 24 hours. Changes in CAT activity on molecular level were consistent with those on cellular level. The fluorescence quenching of CAT by maltol was static with the forming of maltol‐CAT complex. Moreover, ultraviolet‐visible (UV‐visible) absorption, synchronous fluorescence, and circular dichroism (CD) spectra reflected that the presence of maltol caused conformational change of CAT and made the CAT molecule skeleton loose and increased α‐helix of CAT. Maltol mainly bound with CAT through hydrogen bond, and binding site that is near the heme ring in the enzyme activity center did not interact with its main amino acid residues. This study explores the combination between maltol and CAT, providing references for evaluating health damages caused by maltol.  相似文献   

4.
The application of quantum dots (QDs) is restricted by the biosafety issue. QDs contribute to the adverse effects of organisms probably because of the ability to induce oxidative stress via changing the activity of antioxidant enzyme, for example, superoxide dismutase (SOD). But the underlying molecular mechanisms still remain unclear. This study investigated the harmful effects of oxidative stress induced by mercaptopropionic acid capped CdTe QDs (MPA‐CdTe QDs) on the mouse primary nephrocytes as well as the structure and function of SOD molecule and explored the underlying molecular mechanism. After 24‐hour MPA‐CdTe QD exposure, the activation level of extracellular regulated protein kinase (ERK) signaling pathway and cysteinyl‐directed aspartate‐specific proteases (Caspases) significantly increased, which led to the increasing level of reactive oxygen species (ROS) and cell apoptosis; the group pretreated with ROS scavenger N‐acetyl‐L‐cysteine (NAC) significantly reduced the apoptotic cell percentage, indicating that ROS played a critical role in QD‐induced cytotoxicity. Further molecular experiments showed that the interacting processes between the MPA‐CdTe QDs and SOD were spontaneous which changed the conformation, secondary structure of SOD. The interaction significantly resulted in the tightening of polypeptide chains and the shrinkage of SOD, leading to the inhibition of molecular SOD activity. This study demonstrates the adverse effects of QDs, revealing their potential risk in biomedical applications.  相似文献   

5.
In our environment, we have numerous chances to be exposed to not only electromagnetic fields (EMFs) but also many chemicals containing mutagens. Therefore, the aim of this study was to estimate whether rat’s exposure to cadmium and/or EMFs could cause oxidative damage to molecular structure of proteins and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each exposure alone. Thirty-two rats were divided into four groups. Group 1 was termed as control, group 2 was treated with cadmium (3.0?mg/Kg), group 3 was exposed to EMF (10?mT/h/day) and group 4 was treated with cadmium and exposed to EMF. Protein carbonyls (PCO) in the plasma as a marker of oxidative protein damage and total oxidant status (TOS), as well as electrical conductivity and SDS electrophoresis to estimate changes in molecular structure of protein, were determined. The exposure to Cd and/or EMF led to oxidative protein damage (increased PCO and TOS) accomplished by increased stress of electrical charges on the surface of the protein molecule (increased electrical conductivity) and changes in the molecular structure of protein. The effects were more pronounced after treatment with both Cd and EMF than at the treatment with each exposure alone. The serious damage to proteins at the co-exposure to Cd and EMF seems to be due to the interference of the EMF with the toxic activity of cadmium. This work concluded that combined exposure to Cd and EMFs might increase the risk of plasma damage via enhancing free radical generation and protein oxidation.  相似文献   

6.
Barley (Hordeum vulgare L.) is one of the most Aluminum (Al) sensitive cereal species. In this study, the physiological, biochemical, and molecular response of barley seedlings to Al treatment was examined to gain insight into Al response and tolerance mechanisms. The results showed that superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity were inhibited to different degrees following Al exposure. The MDA content also significantly increased with increasing Al concentrations. SRAP results indicated significant differences between Al treatments and controls in terms of SRAP profile, and the genomic template stability (GTS) decreased with increasing Al concentration and duration. These integrative results help to elucidate the underlying mechanisms that the barley response to Al toxicity.  相似文献   

7.
The interactions between well‐dispersed multiwalled carbon nanotubes (MWCNTs) and catalase (CAT) were investigated. The activity of CAT was inhibited with the addition of MWCNTs. After deducting the inner filter effect, the fluorescence spectra revealed that the tryptophan (Trp) residues were exposed and the fluorescence intensities of CAT increased with the increase in the MWCNTs concentration. At the same time, the environment of the Trp residues became more hydrophobic. The results of UV–vis absorption spectroscopy and CD spectra indicated that the secondary structure of CAT had been changed, and the amino acid residues were located in a more hydrophobic environment. Meanwhile, the UV–vis spectra indicated that the conformation of the heme porphyrin rings was changed. The microenvironment of CAT activity sites may be interfered by MWCNTs. This research showed that MWCNTs could not only contribute to the conformational changes of protein but also change the enzyme function.  相似文献   

8.
Crystal structure and electron transfer properties of cytochrome c3   总被引:3,自引:0,他引:3  
The crystal structure of cytochrome c3 from the sulfate-reducing bacteria Desulfovibrio desulfuricans, Norway strain, has been determined through the fitting of the recently completed primary structure to a 2.5 A resolution electron density map. The phase calculations were based on three mercurial derivatives; anomalous scattering data were used to refine the four heme iron positions. A preliminary refinement of the molecular model has led to a conventional crystallographic R factor of 34%. Cytochrome c3 is folded in two structural domains with one heme in each, the two other heme moieties lying in a large groove dividing the molecule. The core of the protein is the compact four-heme cluster which presents a relatively high degree of solvent exposure. The structural pattern of redox centers suggests that electron transfer might occur through direct contacts between some of the heme groups, via the overlapping system of pi oribitals or via intervening amino acid side chains or both.  相似文献   

9.
We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (-262;-844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT -262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT, respectively, p < 0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF-308 SNP was associated with catalase activity (p = 0.04 and p = 0.8). CAT -262 T carriers were less frequent in highly exposed miners (OR = 0.39 [0.20-0.78], p = 0.007). In CAT -262 T carriers only, catalase activity decreased with high dust exposure (p = 0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT -262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity.  相似文献   

10.
Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of antioxidant defenses and tolerance against oxidative stress. However, the underlying molecular mechanisms are largely unknown. Here, we report that the rice (Oryza sativa) CCaMK (OsDMI3) physically interacts with and phosphorylates OsUXS3, a cytosol-localized UDP-xylose synthase. Genetic and biochemical evidence demonstrated that OsUXS3 acts downstream of OsDMI3 to enhance the oxidative stress tolerance conferred by higher catalase (CAT) activity. Indeed, OsUXS3 interacted with CAT isozyme B (OsCATB), and this interaction was required to increase OsCATB protein abundance under oxidative stress conditions. Furthermore, we showed that OsDMI3 phosphorylates OsUXS3 on residue Ser-245, thereby further promoting the interaction between OsUXS3 and OsCATB. Our results indicate that OsDMI3 promotes the association of OsUXS3 with OsCATB to enhance CAT activity under oxidative stress. These findings reveal OsUXS3 as a direct target of OsDMI3 and demonstrate its involvement in antioxidant defense.  相似文献   

11.
目的 研究我国南海区某海洋钻井水基钻井液对诸氏鲻虾虎鱼抗氧化酶的影响.方法在19.75~158 mg/L浓度下,对3月龄诸氏鲻虾虎鱼染毒,并用试剂盒法测定超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性.结果 SOD对水基钻井液的毒性暴露不太敏感,在染毒第1天只有最低浓度组受到一定程度的抑制,染毒第2 天各浓度组酶活性均受到一定程度的诱导(12.4%~25.5%),这种诱导作用在第4天即有所减弱,之后酶活性的变化变缓.CAT则对水基钻井液表现出较强的敏感性.染毒第1 天,各组酶活性均受到明显的诱导,并且各组酶活性表现出明显的浓度效应关系.最高浓度组酶活性最大诱导率达到97%(P&gt;0.05).随后虾虎鱼CAT酶活性逐渐下降,第7 天,各染毒组酶活性的抑制率达到58.4%~89.1%.结论 CAT在中毒反应中表现出了敏感性,具备了作为生物标志物的重要条件,有望在今后的实际应用中发挥作用.  相似文献   

12.
The imidazole of His-195 plays an essential role in the proposed general base mechanism of chloramphenicol acetyltransferase (CAT). The structure of the binary complex of CATIII and chloramphenicol suggests that two unusual interactions might determine the conformation of the side chain of His-195: (i) an intraresidue hydrogen bond between its main chain carbonyl and the protonated N delta 1 of the imidazole ring and (ii) face-to-face van der Waals contact between the His-195 imidazole group and the aromatic side chain of Tyr-25. Tyr-25 also makes a hydrogen bond, via its phenolic hydroxyl, to the carbonyl oxygen of the substrate chloramphenicol. Replacement of Tyr-25 of CATIII by phenylalanine results in a modest increase in the Km for chloramphenicol (from 11.6 to 14.6 microM) and a 2-fold fall in kcat (599 to 258 s-1), indicative of a free energy contribution to transition state binding of 0.6 kcal mol-1 for the hydrogen bond between Tyr-25 and chloramphenicol. In contrast, substitution of Tyr-25 by alanine yields an enzyme that is dramatically impaired in its ability to bind chloramphenicol (Km = 173 microM). As kcat for Ala-25 CAT is also reduced (130 s-1), the loss of the aryl group results in a 69-fold decrease in kcat/Km, corresponding to a free energy contribution to binding and catalysis of 2.5 kcal mol-1. In addition to the loss of the hydrogen bond between Tyr-25 and chloramphenicol, the loss of substrate affinity in Ala-25 CAT may be a direct consequence of reduced hydrophobicity of the chloramphenicol-binding site and/or the loss of critical constraints on the precise conformation of the catalytic imidazole. However, as with wild type CAT, inactivation of Ala-25 CAT by the affinity reagent 3-(bromoacetyl) chloramphenicol is accompanied by modification solely at N epsilon 2 of His-195. Hence, the results demonstrate that tautomeric stabilization of the imidazole ring persists in the absence of van der Waals interactions with the side chain of Tyr-25, probably as a consequence of hydrogen bonding between the protonated N delta 1 and the carbonyl oxygen of His-195.  相似文献   

13.
14.
The Involvement of Sphingolipids in Multidrug Resistance   总被引:13,自引:0,他引:13  
Administration of most chemotherapeutic agents eventually results in the onset of apoptosis, despite the agents' variety in structure and molecular targets. Ceramide, the central molecule in cellular glycosphingolipid metabolism, has recently been identified as an important mediator of this process. Indeed, one of the events elicited by application of many cytotoxic drugs is an accumulation of this lipid. Treatment failure in cancer chemotherapy is largely attributable to multidrug resistance, in which tumor cells are typically cross-resistant to multiple chemotherapeutic agents. Different cellular mechanisms underlying this phenomenon have been described. Of these the drug efflux pump activity of P-glycoprotein and the multidrug resistance-associated proteins are the most extensively studied examples. Recently, an increased cellular capacity for ceramide glycosylation has been recognized as a novel multidrug resistance mechanism. Indeed, virtually all multidrug-resistant cells exhibit a deviating sphingolipid composition, most typically, increased levels of glucosylceramide. On the other hand, several direct molecular interactions between sphingolipids and drug efflux proteins have been described. Therefore, in addition to a role in the multidrug resistance phenotype by which ceramide accumulation and, thus, the onset of apoptosis are prevented, an indirect role for sphingolipids might be envisaged, by which the activity of these efflux proteins is modulated. In this review, we present an overview of the current understanding of the interesting relations that exist between sphingolipid metabolism and multidrug resistance. Received: 16 June 2000/Revised: 16 August 2000  相似文献   

15.
黑斑蛙精巢MDA和抗氧化酶对铅、镉暴露的生态毒性响应   总被引:3,自引:0,他引:3  
施蔡雷  张杭君  贾秀英 《生态学报》2010,30(13):3569-3574
以健康性成熟黑斑蛙为供试动物,以精巢组织丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性为指标,进行了水体铅、镉暴露的生态毒性响应研究.结果表明:(1)精巢MDA含量随铅、镉暴露浓度的升高而明显增加,且呈明显的浓度-效应关系.说明低水平铅、镉的长期暴露对黑斑蛙精巢具有一定的损伤作用;(2)SOD活性在各处理组响应变化不明显,CAT、GSH-Px活性则被显著诱导,说明GSH-Px、CAT在铅、镉引起的精巢抗氧化损伤中起着重要作用;(3)3种抗氧化酶相比,GSH-Px活性对铅、镉暴露响应最敏感,SOD活性的响应最不明显,精巢GSH-Px活性是指示铅、镉暴露的优选生物标志物。  相似文献   

16.
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O2.−) formation was inhibited at 3 or 21 h of exposure, but H2O2 production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.  相似文献   

17.
We report the synthesis, solid state structural characterization and direct surface patterning of two adenine-copper(I) complexes. The ligand, 9-allyladenine, exhibits Cu(I) coordination via an N3-M-N7 mode by invoking participation from an allylic double bond and acetonitrile solvent molecule to result in an EPR silent complex. Detailed crystal structure studies of the coordination polymer thus formed were followed by NMR to ascertain the Cu(I)-olefin interaction occurring via an allylic substituent at the N9 position. On air exposure, acetonitrile molecule was substituted by a water molecule affording a unique example of a water-bound Cu(I) complex. Direct deposition of these complexes on graphite surface resulted in a pattern which could be readily correlated to the crystal structure.  相似文献   

18.
The direct voltammetry of catalase (CAT) immobilized in silica sol-gel film in the presence of cysteine on gold electrode was investigated. The CAT electrode showed a pair of well-defined and quasi-reversible cyclic voltammetry peaks. It can be used as an electrochemical biosensor for the determination of hydrogen peroxide. The calibration range of H(2)O(2) was from 1 to 30 micromolL(-1) and the detection limit was 0.4 micromolL(-1) at a signal-to-noise ratio of 3. The interaction of CAT and aluminum ion was also investigated based on the CAT-modified electrode. The electrochemical activity of the CAT-modified electrode was increased with the addition of Al(3+). The experimental results of voltammetry and fluorescence spectroscopy indicated that the conformation of CAT molecule was altered by the formation of Al-CAT complex with Al(3+), which may influence the activity of CAT.  相似文献   

19.
20.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号