首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.  相似文献   

3.
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.  相似文献   

4.
In this study, we identified the most deleterious nsSNP in CDKN2A gene through structural and functional properties of its protein (p16INK4A) and investigated its binding affinity with cdk6. Out of 118 SNPs, 14 are nsSNPs in the coding region and 17 SNPs were found in the untranslated region (UTR). FastSNP suggested that 7 SNPs in the 5' UTR might change the protein expression levels. Sixty-four percent of nsSNPs are found to be damaged in PolyPhen server among the 14 nsSNPs investigated. With this effort, we modeled the mutant p16INK4A proteins based on these deleterious nsSNPs, out of which three nsSNPs associated p16INK4A had RMSD values of greater than 3.00 A with native protein. From a comparison of total energy of these three mutant proteins, we identified that the major mutation is from Aspartic acid to Tyrosine at the residue position of 84 of p16INK4A. Further, we compared the binding efficiency of both native and mutant p16INK4A with cdk6. We found that mutant p16INK4A has less binding affinity with cdk6 compared to native type. This is due to ten hydrogen bonds and eight salt bridges which exist between the native type and cdk6, whereas the mutant type makes only nine hydrogen bonds and five salt bridges with cdk6. Based on our investigation, we propose that the SNP with the ID rs11552822 could be the most deleterious nsSNP in CDKN2A gene, causing malignant melanoma, as it was well correlated with experimental studies carried out elsewhere.  相似文献   

5.
In this study,we identified the most deleterious nsSNP in RB1 gene through structural and functional properties of its protein (pRB) and investigated its binding affinity with E2F-2.Out of 956 SNPs,we investigated 12 nsSNPs in coding region in which three of them (SNPids rs3092895,rs3092903 and rs3092905) are commonly found to be damaged by I-Mutant 2.0,SIFT and PolyPhen programs.With this effort,we modeled the mutant pRB proteins based on these deleterious nsSNPs.From a comparison of total energy,stabilizing residues and RMSD of these three mutant proteins with native pRB protein,we identified that the major mutation is from Glutamic acid to Glycine at the residue position of 746 of pRB.Further,we compared the binding efficiency of both native and mutant pRB (E746G) with E2F-2.We found that mutant pRB has less binding affinity with E2F-2 as compared to native type.This is due to sixteen hydrogen bonding and two salt bridges that exist between native type and E2F-2,whereas mutant type makes only thirteen hydrogen bonds and one salt bridge with E2F-2.Based on our investigation,we propose that the SNP with an id rs3092905 could be the most deleterious nsSNP in RB1 gene causing retinoblastoma.  相似文献   

6.
In this study, we identified the most deleterious nsSNP in RB1 gene through structural and functional properties of its protein (pRB) and investigated its binding affinity with E2F-2. Out of 956 SNPs, we investigated 12 nsSNPs in coding region in which three of them (SNPids rs3092895, rs3092903 and rs3092905) are commonly found to be damaged by I-Mutant 2.0, SIFT and PolyPhen programs. With this effort, we modeled the mutant pRB proteins based on these deleterious nsSNPs. From a comparison of total energy, stabilizing residues and RMSD of these three mutant proteins with native pRB protein, we identified that the major mutation is from Glutamic acid to Glycine at the residue position of 746 of pRB. Further, we compared the binding efficiency of both native and mutant pRB (E746G) with E2F-2. We found that mutant pRB has less binding affinity with E2F-2 as compared to native type. This is due to sixteen hydrogen bonding and two salt bridges that exist between native type and E2F-2, whereas mutant type makes only thirteen hydrogen bonds and one salt bridge with E2F-2. Based on our investigation, we propose that the SNP with an id rs3092905 could be the most deleterious nsSNP in RB1 gene causing retinoblastoma.  相似文献   

7.
Cyclic-dependent kinase 2 (CDK2) is one of the primary protein kinases involved in the regulation of cell cycle progression. Flavopiridol is a flavonoid derived from an indigenous plant act as a potent antitumor drug showing increased inhibitory activity toward CDK2. The presence of deleterious variations in CDK2 may produce different effects in drug-binding adaptability. Studies on nsSNPs of CDK2 gene will provide information on the most likely variants associated with the disease. Furthermore, investigating the relationship between deleterious variants and its ripple effect in the inhibitory action with drug will provide fundamental information for the development of personalized therapies. In this study, we predicted four variants Y15S, V18L, P45L, and V69A of CDK2 as highly deleterious. Occurrence of these variations seriously affected the normal binding capacity of flavopiridol with CDK2. Analysis of 10-ns molecular dynamics (MD) simulation trajectories indicated that the predicted deleterious variants altered the CDK2 stability, flexibility, and surface area. Notably, we noticed the decrease in number of hydrogen bonds between CDK2 and flavopiridol mutant complexes in the whole dynamic period. Overall, this study explores the possible relationship between the CDK2 deleterious variants and the drug-binding ability with the help of molecular docking and MD approaches.  相似文献   

8.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder,whose symptoms include cerebellar ataxia and epilepsy. The disease is caused by ATTCT expansion in the ATXN10 gene, which encodes the Ataxin-10 protein. Here we identified polo-like kinase 1 (Plk1) as one of Ataxin-10's binding partners. We show that epitope-tagged Ataxin-10 and Plk1 coimmunoprecipitate, and Plk1 phosphorylates Ataxin-10 at S77 and T82 in vitro. Knockdown of ATXN10 with siRNA in HeLa cells results in cytokinesis defects-multinucleation, which are rescued by wild-type Ataxin-10, but not the phosphor-deficient 2A mutant. Phosphorylation-specific antibodies towards pS77 detect specific signals at the midbody. Like the knockdown, overexpression of the 2A mutant generates multinucleated cells and the 2A mutant shows decreased interaction with the Plk1 polo-box domain. In addition, we found that Ataxin-10 is ubiquitinated, and is subject to proteasome-dependent degradation, which is delayed in the 2A mutant. We propose a model in which Plk1 phosphorylation of Ataxin-10 influences its degradation and cytokinesis, which may provide mechanistic insight to SCA10's pathogenesis.  相似文献   

9.
10.
钱旭丽  曹新 《遗传》2015,37(7):664-672
群体凝血因子C同源物基因(Coagulation factor C homology,COCH)是人类发现的第一个伴前庭功能障碍的耳聋基因,位于人类染色体14q12-q13上。迄今,在COCH基因上发现16个位点突变导致常染色体显性遗传非综合征型耳聋DFNA9的发生,其中包括13个非同义单核苷酸多态性(Non-synonymous single nucleotide polymorphisms,nsSNPs)位点。由于该基因其他nsSNPs的基因型与表型关系尚不清楚,因此文章采用生物信息学方法,从COCH基因全部的SNPs中分级筛选,结合已知的致病nsSNPs信息及蛋白三维结构验证,首次预测出由COCH基因编码的cochlin蛋白的vWFA (Von Willebrand factor type A domain)区的8个高风险致病性nsSNPs(I176T、R180Q、G265E、V269L、I368N、I372T、R416C和Y424D)。同时,对位于LCCL (Limulus factor C, cochlin, and late gestation lung protein Lgl1)区域的6个已知致病突变的nsSNPs ( P51S、G87W、I109N、I109T、W117R和F121S)进行了三维结构模拟,发现突变体均发生了环状结构或链状结构的改变。本研究对COCH基因的基因型与表型的相关性研究为遗传性耳聋筛查提供了相应的理论依据,也对该基因所编码的cochlin蛋白的功能研究具有一定的指导意义。  相似文献   

11.
The ubiquitin‐selective chaperone p97 is involved in major proteolytic pathways of eukaryotic cells and has been implicated in several human proteinopathies. Moreover, mutations in p97 cause the disorder inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD). The molecular basis underlying impaired degradation and pathological aggregation of ubiquitinated proteins in IBMPFD is unknown. Here, we identify perturbed co‐factor binding as a common defect of IBMPFD‐causing mutant p97. We show that IBMPFD mutations induce conformational changes in the p97 N domain, the main binding site for regulatory co‐factors. Consistently, mutant p97 proteins exhibit strongly altered co‐factor interactions. Specifically, binding of the ubiquitin ligase E4B is reduced, whereas binding of ataxin 3 is enhanced, thus resembling the accumulation of mutant ataxin 3 on p97 in spinocerebellar ataxia type 3. Our results suggest that imbalanced co‐factor binding to p97 is a key pathological feature of IBMPFD and potentially of other proteinopathies involving p97.  相似文献   

12.
Phosphorylation of ATXN1 at Ser776 in the cerebellum   总被引:1,自引:1,他引:0  
Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative disorders caused by a mutant protein with an expanded polyglutamine tract. Phosphorylation of ataxin-1 (ATXN1) at serine 776 is implicated in SCA1 pathogenesis. Previous studies, utilizing transfected cell lines and a Drosophila photoreceptor model of SCA1, suggest that phosphorylating ATXN1 at S776 renders it less susceptible to degradation. This work also indicated that oncogene from AKR mouse thymoma (Akt) promotes the phosphorylation of ATXN1 at S776 and severity of neurodegeneration. Here, we examined the phosphorylation of ATXN1 at S776 in cerebellar Purkinje cells, a prominent site of pathology in SCA1. We found that while phosphorylation of S776 is associated with a stabilization of ATXN1 in Purkinje cells, inhibition of Akt either in vivo or in a cerebellar extract-based phosphorylation assay did not decrease the phosphorylation of ATXN1-S776. In contrast, immunodepletion and inhibition of cyclic AMP-dependent protein kinase decreased phosphorylation of ATXN1-S776. These results argue against Akt as the in vivo kinase that phosphorylates S776 of ATXN1 and suggest that cyclic AMP-dependent protein kinase is the active ATXN1-S776 kinase in the cerebellum.  相似文献   

13.
14.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   

15.
16.
Uroporphyrinogen decarboxylase is a cytosolic enzyme involved in the biosynthetic pathway of heme production. Decreased activity of this enzyme results in porphyria cutanea tarda and hepato erythropoietic porphyria. Nonsynonymous single nucleotide polymorphisms (nsSNPs) alter protein sequence and can cause disease. Identifying the deleterious nsSNPs that contribute to disease is an important task. We used five different in silico tools namely SIFT, PANTHER, PolyPhen2, SNPs&GO, and I-mutant3 to identify deleterious nsSNPs in UROD gene. Further, we used molecular dynamic (MD) approach to evaluate the impact of deleterious mutations on UROD protein structure. By comparing the results of all the five prediction results, we screened 35 (51.47 %) nsSNPs as highly deleterious. MD analysis results show that all the three L161Q, L282R, and I334T deleterious variants were affecting the UROD protein structural stability and flexibility. Our findings provide strong evidence on the effect of deleterious nsSNPs in UROD gene. A detailed MD study provides a new insight in the conformational changes occurred in the mutant structures of UROD protein.  相似文献   

17.
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations in humans and play a major role in the genetics of human phenotype variation and the genetic basis of human complex diseases. Recently, there is considerable interest in understanding the possible role of the CYP11B2 gene with corticosterone methyl oxidase deficiency, primary aldosteronism, and cardio-cerebro-vascular diseases. Hence, the elucidation of the function and molecular dynamic behavior of CYP11B2 mutations is crucial in current genomics. In this study, we investigated the pathogenic effect of 51 nsSNPs and 26 UTR SNPs in the CYP11B2 gene through computational platforms. Using a combination of SIFT, PolyPhen, I-Mutant Suite, and ConSurf server, four nsSNPs (F487V, V129M, T498A, and V403E) were identified to potentially affect the structure, function, and activity of the CYP11B2 protein. Furthermore, molecular dynamics simulation and structure analyses also confirmed the impact of these nsSNPs on the stability and secondary properties of the CYP11B2 protein. Additionally, utilizing the UTRscan, MirSNP, PolymiRTS and miRNASNP, three SNPs in the 3′UTR region were predicted to exhibit a pattern change in the upstream open reading frames (uORF), and eight microRNA binding sites were found to be highly affected due to 3′UTR SNPs. This cataloguing of deleterious SNPs is essential for narrowing down the number of CYP11B2 mutations to be screened in genetic association studies and for a better understanding of the functional and structural aspects of the CYP11B2 protein.  相似文献   

18.
Pathogenic CAG (cytosine-adenine-guanine) expansions beyond certain thresholds in the ataxin-2 (ATXN2) gene cause spinocerebellar ataxia type 2 (SCA2) and were shown to contribute to Parkinson disease, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Regulation of ATXN2 gene expression and the function of the protein product are not known. SCA2 exhibits an inverse correlation between the size of the CAG repeat and the age at disease onset. However, a wide range of age at onset are typically observed, with CAG repeat number alone explaining only partly this variability. In this study, we explored the hypothesis that ATXN2 levels could be controlled by DNA methylation and that the derangement of this control may lead to escalation of disease severity and influencing the age at onset. We found that CpG methylation in human ATXN2 gene promoter is associated with pathogenic CAG expansions in SCA2 patients. Different levels of methylation in a SCA2 pedigree without an intergenerational CAG repeat instability caused the disease anticipation in a SCA2 family. DNA methylation also influenced the disease onset in SCA2 homozygotes and SCA3 patients. In conclusion, our study points to a novel regulatory mechanism of ATXN2 expression involving an epigenetic event resulting in differential disease course in SCA2 patients.  相似文献   

19.

Background

In this study, instead of current biochemical methods, the effects of deleterious amino acid substitutions in F8 and F9 gene upon protein structure and function were assayed by means of computational methods and information from the databases. Deleterious substitutions of F8 and F9 are responsible for Haemophilia A and Haemophilia B which is the most common genetic disease of coagulation disorders in blood. Yet, distinguishing deleterious variants of F8 and F9 from the massive amount of nonfunctional variants that occur within a single genome is a significant challenge.

Methods

We performed an in silico analysis of deleterious mutations and their protein structure changes in order to analyze the correlation between mutation and disease. Deleterious nsSNPs were categorized based on empirical based and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for analysis of protein structure stability.

Results

Out of 510 nsSNPs in F8, 378 nsSNPs (74%) were predicted to be ''intolerant'' by SIFT, 371 nsSNPs (73%) were predicted to be ''damaging'' by PolyPhen and 445 nsSNPs (87%) as ''less stable'' by I-Mutant2.0. In F9, 129 nsSNPs (78%) were predicted to be intolerant by SIFT, 131 nsSNPs (79%) were predicted to be damaging by PolyPhen and 150 nsSNPs (90%) as less stable by I-Mutant2.0. Overall, we found that I-Mutant which emphasizes support vector machine based method outperformed SIFT and PolyPhen in prediction of deleterious nsSNPs in both F8 and F9.

Conclusions

The models built in this work would be appropriate for predicting the deleterious amino acid substitutions and their functions in gene regulation which would be useful for further genotype-phenotype researches as well as the pharmacogenetics studies. These in silico tools, despite being helpful in providing information about the nature of mutations, may also function as a first-pass filter to determine the substitutions worth pursuing for further experimental research in other coagulation disorder causing genes.  相似文献   

20.
The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号