首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P73 antisense RNA 1T (TP73‐AS1 or PDAM) is a long non‐coding RNA, which can regulate apoptosis through regulation of p53 signaling‐related anti‐apoptotic genes. An abnormal change of TP73‐AS1 expression was noticed in cancers. The effects of TP73‐AS1 in breast cancer (BC) growth and the underlying mechanism remain unclear so far. In the present study, the effect of TP73‐AS1 in BC cell lines and clinical tumor samples was detected so as to reveal its role and function. In the present study, TP73‐AS1 was specifically upregulated in BC tissues and BC cell lines and was correlated to a poorer prognosis in patients with BC. TP73‐AS1 knocking down suppressed human BC cell proliferation in vitro through regulation of TFAM. In our previous study, we demonstrated that miR‐200a inhibits BC cell proliferation through targeting TFAM; here we revealed that TP73‐AS1 could regulate miR‐200a through direct targeting. Moreover, TP73‐AS1 might compete with TFAM for miR‐200a binding thus to promote TFAM expression. Data from the present study revealed that TP73‐AS1 promoted BC cell proliferation through acting as a competing endogenous RNA (ceRNA) by sponging miR‐200a. In conclusion, we regarded TP73‐AS1 as an oncogenic lncRNA promoting BC cell proliferation and a potential target for human BC treatment.  相似文献   

2.
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

11.
The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells   总被引:1,自引:0,他引:1  
Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions.  相似文献   

12.
13.
14.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   

15.
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号