首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

2.
磷脂酰肌醇3-激酶(phosphatidylinositol-3 kinase,PI3K)是细胞内重要的信号分子,它具有调节细胞增殖、分化、代谢、凋亡等功能。PI3K的基因易发生突变和扩增,从而导致PI3K被激活,与肿瘤的形成和发展密切相关。IA型的PI3K及其下游的信号分子组成的通路参与调节肿瘤细胞的增殖、存活、黏附、迁移等活动。综述了IA型PI3K——PI3Kα、PI3Kβ和PI3Kδ与肿瘤发生、发展的关系,列举了20个具有代表性的IA型PI3K抑制剂,并讨论了它们的分子抑制机制。  相似文献   

3.
Phosphoinositide 3-kinases in immunity: lessons from knockout mice   总被引:3,自引:0,他引:3  
Phosphoinositide 3-kinases (PI3Ks) constitute a family of evolutionarily conserved lipid kinases that phosphorylate the D3 position of the inositol ring of phosphoinositides and produce PI(3)P, PI(3,4)P(2), and PI(3,4,5)P(3). Intense in vitro research over the last decade has unequivocally demonstrated that PI3Ks, in particular those belonging to class I, regulate a vast array of fundamental cellular responses. Given the pleiotropic roles of PI3Ks and the lipid product PI(3,4,5)P(3) in plethora of cellular responses, it is pertinent to explore the significance of PI3K signaling in vivo. In the past two or three years, the components of this signaling pathway have been genetically manipulated in mouse. This review briefly summarizes the immunological significance of PI3K signaling as revealed by the study of gene-targeted "knockout" mice.  相似文献   

4.
5.
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.  相似文献   

6.
Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival and motility. The PI3K pathway is considered to play an important role in tumorigenesis. Activating mutations of the p110α subunit of PI3K (PIK3CA) have been identified in a broad spectrum of tumors. Analyses of PIK3CA mutations reveals that they increase the PI3K signal, stimulate downstream Akt signaling, promote growth factor-independent growth and increase cell invasion and metastasis. In this review, we analyze the contribution of the PIK3CA mutations in cancer, and their possible implications for diagnosis and therapy.  相似文献   

7.
8.
Phosphoinositide 3-kinases (PI3Ks) are important signaling enzymes involved in the regulation of a number of critical cell functions. Significant progress has been made during the last few years in defining the implication of individual PI3K isoforms. The role of the class IA PI3Kβ in different cell types has only been recently uncovered by the use of isoform-selective inhibitors and the development of mouse models harboring p110β catalytic subunit knock-out or germline knock-in of a kinase-dead allele of p110β. Although it is classically admitted that class IA PI3Ks are activated by receptor tyrosine kinases through recruitment of the regulatory subunits to specific tyrosine phosphorylated motifs via their SH2 domains, PI3Kβ is activated downstream of G protein-coupled receptors, and by co-operation between heterotrimeric G proteins and tyrosine kinases. PI3Kβ has been extensively studied in platelets where it appears to play an important role downstream of ITAM signaling, G protein-coupled receptors and aIIbβ3 integrin. Accordingly, mouse exhibiting p110β inactivation selectively in megakaryocyte/platelets are resistant to thromboembolism induced by carotid injury. The present review summarizes recent data concerning the mechanisms of PI3Kβ regulation and the roles of this PI3K isoform in blood platelet functions and other cell types.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI3K) mediates receptor tyrosine kinase and G protein coupled receptor (GPCR) signaling by phosphorylating phosphoinositides to elicit various biological responses. Gαq has previously been shown to inhibit class IA PI3K by interacting with the p110α subunit. However, it is not known if PI3Ks can associate with other Gαq family members such as Gα16. Here, we demonstrated that class IA PI3Ks, p85/p110α and p85/p110β, could form stable complexes with wild type Gα16 and its constitutively active mutant (Gα16QL) in HEK293 cells. In contrast, no interaction between Gα16 and class IB PI3K was observed. The Gα16/p110α signaling complex could be detected in hematopoietic cells that endogenously express Gα16. Overexpression of class I PI3Ks did not inhibit Gα16QL-induced IP3 production and, unlike p63RhoGEF, class IA PI3Ks did not attenuate the binding of PLCβ2 to Gα16QL. On the contrary, the function of class IA PI3Ks was suppressed by Gα16QL as revealed by diminished production of PIP3 as well as inhibition of EGF-induced Akt phosphorylation. Taken together, these results suggest that Gα16 can bind to class IA PI3Ks and inhibit the PI3K signaling pathway.  相似文献   

10.
Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.  相似文献   

11.
3-Methyladenine which stops macroautophagy at the sequestration step in mammalian cells also inhibits the phosphoinositide 3-kinase (PI3K) activity raising the possibility that PI3K signaling controls the macroautophagic pathway (Blommaart, E. F. C., Krause, U., Schellens, J. P. M., Vreeling-Sindelárová, H., and Meijer, A. J. (1997) Eur. J. Biochem. 243, 240-246). The aim of this study was to identify PI3Ks involved in the control of macroautophagic sequestration in human colon cancer HT-29 cells. An increase of class I PI3K products (phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate) caused by either feeding cells with synthetic lipids (dipalmitoyl phosphatidylinositol 3, 4-bisphosphate and dipalmitoyl phosphatidylinositol 3,4, 5-triphosphate) or by stimulating the enzymatic activity by interleukin-13 reduced macroautophagy. In contrast, an increase in the class III PI3K product (phosphatidylinositol 3-phosphate), either by feeding cells with a synthetic lipid or by overexpressing the p150 adaptor, stimulates macroautophagy. Transfection of a specific class III PI3K antisense oligonucleotide greatly inhibited the rate of macroautophagy. In accordance with a role of class III PI3K, wortmannin (an inhibitor of PI3Ks) inhibits macroautophagic sequestration and protein degradation in the low nanomolar range (IC(50) 5-15 nM). Further in vitro enzymatic assay showed that 3-methyladenine inhibits the class III PI3K activity. Dipalmitoyl phosphatidylinositol 3-phosphate supplementation or p150 overexpression rescued the macroautophagic pathway in HT-29 cells overexpressing a GTPase-deficient mutant of the Galpha(i3) protein suggesting that both class III PI3K and trimeric G(i3) protein signaling are required in the control macroautophagy in HT-29 cells. In conclusion, our results demonstrate that distinct classes of PI3K control the macroautophagic pathway in opposite directions. The roles of PI3Ks in macroautophagy are discussed in the context of membrane recycling.  相似文献   

12.
Phosphatidylinositol 3-kinase (PI3K), one member of lipid kinase family, has been demonstrated to play a key role in regulating cell proliferation, adhesion, survival, and motility. Recent studies indicate that PI3K related signaling pathway is one of the most commonly activated pathways in human cancers. Accordingly, pharmacological inhibition of key nodes in this signaling cascade has been a focus in developmental therapeutics. To date, Inhibitors targeting PI3K or nodes in this pathway, AKT and mTOR, are best studied and have reached clinical trials. In this review, we will focus on recent progress on understanding of PI3Ks signaling pathway and the development of PI3K inhibitors.  相似文献   

13.
Directed cell migration involves signaling events that lead to local accumulation of PI(3,4,5)P(3), but additional pathways act in parallel. A genetic screen in Dictyostelium discoideum to identify redundant pathways revealed a gene with homology to patatin-like phospholipase A(2). Loss of this gene did not alter PI(3,4,5)P(3) regulation, but chemotaxis became sensitive to reductions in PI3K activity. Likewise, cells deficient in PI3K activity were more sensitive to inhibition of PLA(2) activity. Deletion of the PLA(2) homolog and two PI3Ks caused a strong defect in chemotaxis and a reduction in receptor-mediated actin polymerization. In wild-type cells, chemoattractants stimulated a rapid burst in an arachidonic acid derivative. This response was absent in cells lacking the PLA(2) homolog, and exogenous arachidonic acid reduced their dependence on PI3K signaling. We propose that PLA(2) and PI3K signaling act in concert to mediate chemotaxis, and metabolites of PLA(2) may be important mediators of the response.  相似文献   

14.
Phosphatidylinositol 3-kinases (PI3Ks) are important regulators of signaling pathways. To determine whether PI3Ks are genetically altered in human cancers, we recently analyzed the sequences of the PI3K gene family and discovered that one member, the PIK3CA gene encoding the p110? catalytic subunit, was frequently mutated in cancers of the colon, breast, brain and lung. The majority of mutations clustered near two positions within the PI3K helical or catalytic domains and at least one hotspot mutation appeared to increase kinase activity. PIK3CA represents one of the most highly mutated oncogenes identified in human cancers and may be a useful diagnostic and therapeutic target.  相似文献   

15.
Phosphoinositide 3-kinases (PI3Ks) are represented by a family of eight distinct enzymes that can be divided into three classes based on their structure and function. The class I PI3Ks are heterodimeric enzymes that are regulated by recruitment to plasma membrane following receptor activation and which control numerous cellular functions, including growth, differentiation, migration, survival, and metabolism. New light has been shed on the biological role of individual members of the class I PI3Ks and their regulatory subunits through gene-targeting experiments. In addition, these experiments have brought the complexity of how PI3K activation is regulated into focus.  相似文献   

16.
Class II isoforms of PI3K (phosphoinositide 3-kinase) are still the least investigated and characterized of all PI3Ks. In the last few years, an increased interest in these enzymes has improved our understanding of their cellular functions. However, several questions still remain unanswered on their mechanisms of activation, their specific downstream effectors and their contribution to physiological processes and pathological conditions. Emerging evidence suggests that distinct PI3Ks activate different signalling pathways, indicating that their functional roles are probably not redundant. In the present review, we discuss the recent advances in our understanding of mammalian class II PI3Ks and the evidence suggesting their involvement in human diseases.  相似文献   

17.
Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.  相似文献   

18.
Lipid second messengers, particularly those derived from the polyphosphoinositide cycle, play a pivotal role in several cell signaling networks. Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in a plethora of cell functions. One of the best-characterized targets of PI3K lipid products is the serine/threonine protein kinase Akt. Recent findings have implicated Akt in cancer progression because it stimulates cell proliferation and suppresses apoptosis. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid molecules are important components of signaling pathways operating within the nucleus. PI3Ks, their lipid products, and Akt have also been identified at the nuclear level. In this review, we shall summarize the most updated findings about these molecules in relationship with the nuclear compartment and provide an overview of the possible mechanisms by which they regulate important cell functions.  相似文献   

19.
Recent studies have demonstrated that PH domains specific for PI(3,4,5)P3 accumulate at the leading edge of a number of migrating cells and that PI3Ks and PTEN associate with the membrane at the front and back, respectively, of chemotaxing Dictyostelium discoideum cells. However, the dependence of chemoattractant induced changes in PI(3,4,5)P3 on PI3K and PTEN activities have not been defined. We find that bulk PI(3,4,5)P3 levels increase transiently upon chemoattractant stimulation, and the changes are greater and more prolonged in pten- cells. PI3K activation increases within 5 s of chemoattractant addition and then declines to a low level of activity identically in wild-type and pten- cells. Reconstitution of the PI3K activation profile can be achieved by mixing membranes from stimulated pi3k1-/pi3k2- cells with cytosolic PI3Ks from unstimulated cells. These studies show that significant control of chemotaxis occurs upstream of the PI3Ks and that regulation of the PI3Ks and PTEN cooperate to shape the temporal and spatial localization of PI(3,4,5)P3.  相似文献   

20.
We have recently demonstrated that the D3-phosphoinositide phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) is critical for producing sustained calcium signals through its role in promoting the function of TEC family tyrosine kinases such as Bruton's tyrosine kinase. Although PtdIns-3,4,5-P(3) can potentially be synthesized by any of several types of phosphoinositide 3-kinases (PI3Ks), B cell receptor (BCR)-induced PtdIns-3,4,5-P(3) production is thought to occur primarily through the activation of the class Ia (p85/p110) PI3Ks. This process has been proposed to be mediated by an interaction between the Src family kinase LYN and the p85 subunit of PI3K and/or through p85 membrane recruitment mediated by CBL and/or CD19. However, calcium signaling and other PI3K-dependent signals are relatively preserved in a LYN kinase-deficient B lymphocyte cell line, suggesting that an alternative pathway for PI3K activation exists. As SYK/ZAP70 kinases are upstream from many BCR-initiated signaling events, we directly analyzed SYK-dependent accumulation of both PtdIns-3,4,5-P(3) and PtdIns-3,4-P(2) in B cell receptor signaling using both dominant negative and genetic knockout approaches. Both methods indicate that SYK is upstream of, and necessary for, a significant portion of BCR-induced PtdIns-3,4, 5-P(3) production. Whereas CD19 does not appear to be involved in this SYK-dependent pathway, the SYK substrate CBL is likely involved as the dominant negative SYK markedly attenuates CBL tyrosine phosphorylation and completely blocks the BCR-dependent association of CBL with p85 PI3K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号