首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aims:  We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect.
Methods and Results:  The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein adsorption profiles obtained from the various materials did not differ significantly, but elution was often incomplete making minor qualitative/quantitative differences indiscernible.
Conclusions:  The data highlights the significance of protein conditioning films on bacterial adhesion and emphasizes the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion.
Significance and Impact of the Study:  Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing bacterial colonization of inert surfaces.  相似文献   

2.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

3.
Aim:  To study the adhesion capability of seven strains of Listeria monocytogenes to polystyrene and stainless steel surfaces after cultivation at various NaCl concentrations.
Methods and Results:  Determination of growth limits indicated that all seven strains were able to grow in up to 11% NaCl in rain heart infusion and 3 g l−1 yeast extract–glucose at 20°C, but no growth was detected at 15% NaCl. Adhesion of L. monocytogenes was estimated after 4-h incubation at 20°C in 96-well microtitre plates. Statistical results revealed no significant difference between adhesion to polystyrene and stainless steel although surface properties were different. Adhesion between 0% and 6% NaCl was not different, whereas adhesion at 11% NaCl was significantly lower. This discrepancy in adhesion was correlated with the down-regulation of flagella at 11% NaCl.
Conclusions:  Only high salinity levels, close to nongrowth conditions, repressed the expression of flagella, and consequently, decreased the adhesion capability of L. monocytogenes .
Significance and Impact of the Study:  Adhesion of L. monocytogenes to inert surfaces depends on environmental conditions that affect flagellum expression. High salinity concentrations would delay biofilm formation.  相似文献   

4.
Abstract

The aim of this study was to assess the respective impacts of the surface energy and surface roughness of bare and coated steels on biofouling and sanitisation. Bioadhesion of Staphylococcus aureus CIP 53.154 was studied on two stainless steel surfaces with smooth or specific micro-topography. Two coatings were also studied: silicon oxide (hydrophilic) and polysiloxane (hydrophobic). On smooth surfaces, adhesion was reduced on an apolar coating and cell viability increased with the surface polarity. A specific micro-topography decreased the level of bacterial adhesion on bare surfaces by a factor ten. On this surface, only single adherent cells were observed, contrasting with cells in clusters on smoother surfaces. As a consequence, cell repartition influenced bacterial viability. Most isolated adherent cells were dead whereas cells in clusters were still alive. In addition, the quaternary ammonium chloride used in sanitisation, acted at once both as a tensio-active molecule and a biocide. It only displaced adherent cells but did not remove them.  相似文献   

5.
The aim of this study was to assess the respective impacts of the surface energy and surface roughness of bare and coated steels on biofouling and sanitisation. Bioadhesion of Staphylococcus aureus CIP 53.154 was studied on two stainless steel surfaces with smooth or specific micro-topography. Two coatings were also studied: silicon oxide (hydrophilic) and polysiloxane (hydrophobic). On smooth surfaces, adhesion was reduced on an apolar coating and cell viability increased with the surface polarity. A specific micro-topography decreased the level of bacterial adhesion on bare surfaces by a factor ten. On this surface, only single adherent cells were observed, contrasting with cells in clusters on smoother surfaces. As a consequence, cell repartition influenced bacterial viability. Most isolated adherent cells were dead whereas cells in clusters were still alive. In addition, the quaternary ammonium chloride used in sanitisation, acted at once both as a tensio-active molecule and a biocide. It only displaced adherent cells but did not remove them.  相似文献   

6.
Aims:  This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action.
Methods and Results:  Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells.
Conclusions:  Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds.
Significance and Impact of the Study:  The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.  相似文献   

7.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

8.
A range of titanium doped diamond-like carbon (Ti-DLC) coatings with different Ti contents were prepared on stainless steel substrates using a plasma-enhanced chemical vapour deposition technique. It was found that both the electron donor surface energy and the surface roughness of the Ti-DLC coatings increased with increasing Ti contents in the coatings. Bacterial adhesion to the coatings was evaluated against Escherichia coli WT F1693 and Pseudomonas aeruginosa ATCC 33347. The experimental data showed that bacterial adhesion decreased with the increases of the Ti content, the electron donor surface energy and surface roughness of the coatings, while the bacterial removal percentage increased with the increases of these parameters. The Ti-DLC coatings reduced bacterial attachment by up to 75% and increased bacterial detachment from 15 to 45%, compared with stainless steel control.  相似文献   

9.

Aims

Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces.

Methods and Results

Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol.

Conclusions

The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface.

Significance and Impact of the Study

Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces.  相似文献   

10.
Aims:  To investigate the effect of silver-based antimicrobial material incorporated in the inner liners of refrigerators on food safety and quality.
Methods and Results:  In the first stage, the bactericidal effect was tested in the laboratory. Silver-containing samples and control plates were inoculated with different bacterial suspensions and stored at various temperatures. After defined storage periods the bacterial reduction was calculated by comparing viable cell count on reference plates and on silver-containing plates. The reduction caused by the silver-containing material varied between 1·0 and 5·9 log10 units, depending on bacterial strain, incubation time and temperature. In the second stage, food storage experiments have been carried out. Thus, perishable foods were stored in coated and untreated refrigerators. After certain time periods the products were analysed for their sensorial and microbiological characteristics. A clear drop in viable counts both on the refrigerator wall and on the food was demonstrated using the silver-based antimicrobial material.
Conclusions:  Silver prevents refrigerators from being a hot spot for contaminants that could be transferred upon contact with food.
Significance and Impact of the Study:  This study provides original results regarding the antimicrobial activity of silver-containing refrigerator surfaces.  相似文献   

11.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

12.
The purpose of these investigations was to evaluate the influence of limited nutrient availability in the culture medium on Proteus vulgaris biofilm formation on surfaces of stainless steel. The relationship between the P. vulgaris adhesion to the abiotic surfaces, the cellular ATP levels, cell surface hydrophobicity and changes in the profiles of extracellular proteins and lipopolysaccharides was examined. In all experimental variants the starvation conditions induced the bacterial cells to adhere to the surfaces of stainless steel. Higher ATP content and lower cell surface hydrophobicity of P. vulgaris cells was observed upon nutrient-limited conditions. Under starvation conditions a reduction in the levels of extracellular low molecular weight proteins was noticed. High molecular weight proteins formed the conditioning layer on stainless steel plates, making the bacteria adhesion process more favorable. The production of low molecular weight carbohydrates promoted more advanced stages of P. vulgaris biofilm formation process on the surfaces of stainless steel upon starvation.  相似文献   

13.
Biofouling of equipment surfaces in the food industry is due initially to physico-chemical adhesion processes, and subsequently to the proliferation of microbes within an extracellular polymer matrix. Two physico-chemical theories can be applied to predict simple cases of bacterial adhesion. However, these models are limited in their applicability owing to the complexity of bacterial surfaces and the surrounding medium. Various factors that can affect the bacterial adhesion process have been listed, all directly linked to the solid substratum, the suspension liquid or the microorganism. For stainless steel surfaces, it is important to take into account the grade of steel, the type of finish, surface roughness, the cleaning procedures used and the age of the steel. Regarding the suspension fluid within which adhesion takes place, pH, ionic composition and the presence of macromolecules are important variables. In addition, the adhering microorganisms have extremely complex surfaces and many factors must be taken into account when conducting adhesion tests, such as the presence of cell appendages, the method of culture, the contact time between the microorganism and the surface, and exopolymer synthesis. Research on biofilms growing on stainless steel has confirmed results obtained with other materials, regarding resistance to disinfectants, the role of the extracellular matrix and the process by which the biofilm forms. However, it appears that the bactericidal activity of disinfectants on biofilms differs according to the type of surface on which they are growing. The main cleaners and disinfectants used in the food industry are alkaline and acid detergents, peracetic acid, quaternary ammonium chlorides and iodophors. The cleanability and disinfectability of stainless steel surfaces have been compared with those of other materials. According to the published research findings, stainless steel is comparable in its biological cleanability to glass, and significantly better than polymers, aluminium or copper. Moreover, microorganisms in a biofilm developing on a stainless steel surface can be killed with lower concentrations of disinfectant than those on polymer surfaces.  相似文献   

14.
Aim:  Fresh kava beverages have a limited shelf life under refrigerated conditions. The objective of this study was to isolate and identify bacteria in aqueous extracts of kava rhizome.
Methods and Results:  The internal part of kava rhizome was used to minimize soil contamination. Three kava extracts were prepared, serially diluted and plated on nutrient agar. Isolated colonies were identified by sequencing polymerase chain reaction amplicons targeting the eubacterial 16S rDNA and the tuf gene of Staphylococcus . Seventy-five bacterial isolates belonged to 16 genera. Bacillus , Cellulomonas , Enterococcus , Pectobacterium and Staphylococcus were identified in all kava extracts.
Conclusions:  Kava rhizome contains large amounts of starch and fibre, which justify the presence of polysaccharide-degrading bacteria in the extracts. Bacillus cereus group and Staphylococcus species may produce toxins and cause foodborne illness.
Significance and Impact of the Study:  The results of this study provide fundamental information that may be used to enhance the microbial quality and safety of kava beverages.  相似文献   

15.
Aims:  The nature of exopolymers involved in the adhesion of a marine biofilm-forming bacterium Pseudoalteromonas sp. D41 was investigated to evaluate and understand the antifouling potential of subtilisin.
Methods and Results:  The exopolymers of D41 produced by fermentation were analysed by FTIR and SDS-PAGE showing the presence of polysaccharides, glycoproteins and proteins. A high content of proteins was detected both in soluble and capsular fractions. The microscopic observations of fluorescamine and calcofluor stained adhered D41 indicated mainly the presence of proteins in exopolymers produced during adhesion. Subtilisin, the broad spectrum protease, tested in natural sea water and in polystyrene microplates showed that antifouling activity was higher in the prevention of bacterial adhesion than in the detachment of adhered D41 cells.
Conclusions:  Overall, these results demonstrate the involvement of proteins in Pseudoalteromonas sp . D41 adhesion and confirm the high antifouling potential of subtilisin.
Significance and Impact of the Study:  This study emphasizes the major role of proteins instead of polysaccharides, thus extending our knowledge regarding the nature of extracellular polymers involved in bacterial adhesion. Furthermore, the high antifouling potential of subtilisin evaluated in the very first stages of fouling, bacterial adhesion, could lead to less toxic compounds than organometallic compounds in antifouling paint.  相似文献   

16.
Aims:  Investigate the effect of detergent treatment on susceptibility of attached Escherichia coli and Listeria monocytogenes to subsequent disinfectant treatment.
Methods and Results:  Plate counts show that E. coli attached to stainless steel surfaces became significantly more susceptible to benzalkonium chloride (BAC) after treatment with sodium alkyl sulfate (SAS) and fatty alcohol ethoxylate (FAE). No change in susceptibility was observed with Sodium dodecyl sulfate (SDS). L. monocytogenes became significantly less susceptible to BAC after treatment with SAS and SDS yet no change in susceptibility was observed with FAE. Flow cytometry using the fluoresceine propidium iodide revealed significant increases in cell membrane permeability of both organisms by SAS and FAE, although the effect was much greater in E. coli . No change was observed with SDS. Hydrophobic interaction chromatography showed that both organisms became less hydrophobic following treatment with SAS and SDS but FAE had no effect.
Conclusions:  In E. coli, detergents that increase susceptibility to BAC increase membrane permeability. In L. monocytogenes, detergents that reduce susceptibility to BAC lower cell surface hydrophobicity.
Significance and Impact of the Study:  Detergents can influence the sensitivity of pathogenic food borne micro-organisms to BAC.  相似文献   

17.
Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm?2. Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm?2 of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.  相似文献   

18.
AIMS: The influence of biosurfactant compounds produced by a strain of Pseudomonas fluorescens on the adhesion of Listeria monocytogenes LO28 to polytetrafluoroethylene (PTFE) and AISI 304 stainless steel surfaces was investigated. METHODS AND RESULTS: The biosurfactant was produced according to a simple, novel technique based on cultivation on nutrient agar. Adhesion studies were performed using L. monocytogenes cells cultured at 20 or 37 degrees C. CONCLUSIONS: A substrate-dependent behaviour of the LO28 strain (larger number of cells adhering to stainless steel than to PTFE), and a significant reduction (< 90%) in microbial adhesion levels through the prior adsorption of biosurfactants on stainless steel surfaces, which can be related to a change in the electron-donor characteristics of this substratum, was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The prior adsorption of biosurfactants on solid surfaces may constitute a new and effective means of combating the implantation of pathogenic micro-organisms in food processing plants.  相似文献   

19.
Aims:  Dental caries is caused by the disturbance in oral homeostasis, marked by a notable increase in the population of Streptococcus mutans . Lectins are a group of plant proteins that are capable of recognizing the glycoconjugates present on the bacterial surface. The aim of this study was to evaluate the effect of seven plant lectins on the growth and initial adhesion of S. mutans .
Methods and Results:  Lectins of different carbohydrate specificities were isolated from plant sources by conventional methods of protein purification. The effect on growth of S. mutans was evaluated following CLSI guidelines. None of the lectins used in this study inhibited the bacterial growth and multiplication. The adherence and biofilm formation of bacteria to saliva-coated polystyrene plates was tested in the presence of plant lectins. All the plant lectins tested, inhibited both the adherence and biofilm in a concentration dependent manner. Confocal microscopy and scanning electron microscopy were employed to assess the biofilm formation in the presence of plant lectin (glucose/mannose-specific) at sub-minimal inhibitory concentrations. These evaluations revealed that lectins inhibited the clumping and attachment of S. mutans .
Conclusions:  Lectins tested here inhibited initial biofilm formation by S. mutans. Glucose/Mannose-specific lectin altered the adhesion arrangement of the bacteria on the saliva-coated surfaces.
Significance and Impact of the Study:  The plant lectins used in this study may offer a novel strategy to reduce development of dental caries by inhibiting the initial adhesion and subsequent biofilm formation of S. mutans.  相似文献   

20.
AIMS: To compare the number of attached Shewanella putrefaciens on stainless steel with different silver surfaces, thus evaluating whether silver surfaces could contribute to a higher hygienic status in the food industry. METHODS AND RESULTS: Bacterial adhesion to three types of silver surface (new silver, tarnished silver and sulphide-treated silver) was compared with adhesion to stainless steel (AISI 316) using the Malthus indirect conductance method to estimate the number of cfu cm(-2). The number of attached bacteria on new silver surfaces was lower than on steel for samples taken after 24 h. However, this was not statistically significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared with stainless steel and some, but not all, experiments showed statistical significance (P < 0.05). Treating new silver with sulphide to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared with steel (P > 0.05). CONCLUSIONS: New or tarnished silver surfaces caused a slight reduction in numbers of attached bacteria; however, the difference was only sometimes statistically significant. SIGNIFICANCE AND IMPACT OF THE STUDY: The lack of reproducibility in differences in numbers adhering to the different surfaces and lack of statistical significance between numbers of adhered viable bacteria do not indicate that the tested silver surfaces can be used to improve hygienic characteristics of surfaces in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号