首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current investigation was carried out in order to compare directly the multiple tube fermentation method (MTF), using standard procedures (lactose broth, LB) and the Colilert reagent, with the membrane filter method (MF) using Les Endo agar (LEA), m-faecal coliform agar (mFCA) and chromogenic coliform agar (CCA), for recovery of coliforms and Escherichia coli in 80 surface water samples. Total coliforms were isolated from 100% of samples by all methodologies. Faecal coliforms/E. coli were detected in 100% of samples by MTF methods, but only in 75.5% by MF-mFCA and in 86.2% by MF-CCA. Even if MTF-LB counts were consistently higher, the Colilert reagent accurately determined total coliforms and E. coli levels within 24 h with no additional confirmatory tests. Therefore, it could be a powerful tool for rapidly assessing possible faecal contamination and a suitable alternative to the traditional MTF and MF techniques utilized for coliform detection.  相似文献   

2.
Ability of the Colilert method to recover oxidant-stressed Escherichia coli   总被引:2,自引:1,他引:1  
Methods for the microbiological analysis of drinking water must be able to detect Escherichia coli that may be injured by treatment. The Colilert method, which simulaneously detects total coliforms and E. coli in water samples by the observation of direct colour changes produced by defined substrates in the media, was found to be equivalent to the reference EC MUG method in its ability to recover low numbers (< 4/100 ml) of oxidant-stressed E. coli.  相似文献   

3.
Many water utilities are required to monitor source water for the presence of total coliforms, fecal coliforms, or both. The Colilert system, an application of the defined substrate technology, simultaneously detects the presence of both total coliforms and Escherichia coli directly from a water sample. After incubation, the formula becomes yellow if total coliforms are present and fluorescent at 366 nm if E. coli is in the same sample. No confirmatory tests are required. The Colilert system was previously assessed with distribution water in a national evaluation in both most-probably-number and presence-absence formats and found to produce data equivalent to those obtained by using Standard Methods for the Examination of Water and Wastewater (Standard Methods). The Colilert system was now compared with Standard Methods multiple-tube fermentation (MTF) for the enumeration of total coliforms and E. coli from surface water. All MTF tubes were confirmed according to Standard Methods, and subcultures were made to identify isolates to the species level. The Colilert system was found equally sensitive to MTF testing by regression, t test, chi-square, and likelihood fraction analyses. Specificity of the Colilert system was shown by the isolation of a species of total coliform or E. coli after the appropriate color change. The Colilert test can be used for source water samples when enumeration is required, and the benefits previously described for distribution water testing--sensitivity, specificity, less labor, lower cost, faster results, no noncoliform heterotroph interference--are applicable to this type of water analysis.  相似文献   

4.
Many water utilities are required to monitor source water for the presence of total coliforms, fecal coliforms, or both. The Colilert system, an application of the defined substrate technology, simultaneously detects the presence of both total coliforms and Escherichia coli directly from a water sample. After incubation, the formula becomes yellow if total coliforms are present and fluorescent at 366 nm if E. coli is in the same sample. No confirmatory tests are required. The Colilert system was previously assessed with distribution water in a national evaluation in both most-probably-number and presence-absence formats and found to produce data equivalent to those obtained by using Standard Methods for the Examination of Water and Wastewater (Standard Methods). The Colilert system was now compared with Standard Methods multiple-tube fermentation (MTF) for the enumeration of total coliforms and E. coli from surface water. All MTF tubes were confirmed according to Standard Methods, and subcultures were made to identify isolates to the species level. The Colilert system was found equally sensitive to MTF testing by regression, t test, chi-square, and likelihood fraction analyses. Specificity of the Colilert system was shown by the isolation of a species of total coliform or E. coli after the appropriate color change. The Colilert test can be used for source water samples when enumeration is required, and the benefits previously described for distribution water testing--sensitivity, specificity, less labor, lower cost, faster results, no noncoliform heterotroph interference--are applicable to this type of water analysis.  相似文献   

5.
AIMS: The reference methods for enumeration of total coliforms and Escherichia coli as stated in the European Drinking Water Directive were compared with alternative methods. METHODS AND RESULTS: Laboratories used the reference method on Lactose TTC agar (LTTC), the Colilert/18 system, Laurysulphate Agar (LSA), Chromocult Coliform Agar and the E. coli Direct Plating (DP) method. They enumerated more total coliforms on LTTC than on LSA. CONCLUSIONS: LTTC is suitable for analysis of very clean water samples only, due to heavy background growth. Colilert/18 is a good alternative but it enumerates a broader group of total coliforms, resulting in higher counts. The DP method appeared to be the best choice for enumeration of E. coli because Colilert/18 produces lower counts and false-negative results. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the limitations of the EU reference method on LTTC due to lack of selectivity and suggests alternative methods for the enumeration of total coliforms and E. coli.  相似文献   

6.
The new United States Drinking Water Regulations state that water systems must analyze for Escherichia coli or fecal coliforms on any routine or repeat sample that is positive for total coliforms. The proposed methods for the detection of E. coli are based on beta-glucuronidase activity, using the fluorogenic substrate 4-methylumbelliferyl beta-D-glucuronide (MUG). This study was conducted to determine whether beta-glucuronidase negative E. coli were present in significant numbers in environmental waters. Two hundred and forty E. coli cultures were isolated from 12 water samples collected from different environmental sources. beta-glucuronidase activity was determined using lauryl tryptose broth with MUG, EC broth with MUG, and the Autoanalysis Colilert (AC) procedure. The isolates were also evaluated by the standard EC broth gas fermentation method for fecal coliforms. The results confirm that assaying for the enzyme beta-glucuronidase utilizing the MUG substrate is an accurate method for the detection of E. coli in environmental waters.  相似文献   

7.
Three commercially available kits that were supplemented with substrates for enzyme reactions were evaluated to determine their abilities to detect coliforms and fecal coliforms in foods. Japanese and U.S. Food and Drug Administration standard methods, as well as two agar plate methods, were compared with the three commercial kits. A total of 50 food samples from various retailers were examined. The levels of detection of coliforms were high with the commercial kits (78 to 98%) compared with the levels of detection with the standard methods (80 to 83%) and the agar plate methods (56 to 83%). Among the kits tested, the Colilert kit had highest level of recovery of coliforms (98%), and the level of recovery of Escherichia coli as determined by beta-glucuronidase activity with the Colilert kit (83%) was comparable to the level of recovery obtained by the U.S. Food and Drug Administration method (87%). Isolation of E. coli on the basis of the beta-glucuronidase enzyme reaction was found to be good. Levine's eosine methylene blue agar, which has been widely used in various laboratories to isolate E. coli was compared with 4-methylumbelliferyl-beta-D-glucuronide (MUG)-supplemented agar for isolation of E. coli. Only 47% of the E. coli was detected when eosine methylene blue agar was used; however, when violet red bile (VRB)-MUG agar was used, the E. coli detection rate was twice as high. Of the 200 E. coli strains isolated, only 2 were found to be MUG negative, and the gene responsible for beta-glucuronidase activity (uidA gene) was detected by the PCR method in these 2 strains. Of the 90 false-positive strains isolated that exhibited various E. coli characteristic features, only 2 non-E.coli strains hydrolyzed MUG and produced fluorescent substrate in VRB-MUG agar. However, the PCR did not amplify uidA gene products in these VRB-MUG fluorescence-positive strains.  相似文献   

8.
A commercial gene probe assay kit for presence/absence determination of Escherichia coli in food samples has been used in the standard UK six tube format most probable number (MPN) method for enumerating E. coli in drinking water samples. Presence/absence analysis with the gene probe kit (requiring 3 h) of all MPN tubes after a 21–24 h incubation (minerals modified glutamate; 37°C) enumerated confirmed E. coli in 24–27 h which offered an improvement of up to 48 h over the standard UK MPN method. MPNs determined by the gene probe method and the standard UK method agreed in nine of the 16 water samples which were analysed and for which E. coli concentrations were within the detection limits of the six tube MPN format. This was consistent with the gene probe method detecting one E. coli in a tube. For the other seven water samples, the gene probe method registered positive only 20 of the 30 tubes which the standard UK method determined to be positive. The sensitivity of the gene probe method for drinking water samples, although encouraging, needs improvement perhaps through kit quality control procedures.  相似文献   

9.
Bermuda residents collect rainwater from rooftops to fulfil their freshwater needs. The objective of this study was to assess the microbiological quality of drinking water in household tanks throughout Bermuda. The tanks surveyed were selected randomly from the electoral register. Governmental officers visited the selected household (n = 102) to collect water samples and administer a short questionnaire about the tank characteristics, the residents' habits in terms of water use, and general information on the water collecting system and its maintenance. At the same time, water samples were collected for analysis and total coliforms and Escherichia coli were determined by 2 methods (membrane filtration and culture on chromogenic media, Colilert kit). Results from the 2 methods were highly correlated and showed that approximately 90% of the samples analysed were contaminated with total coliforms in concentrations exceeding 10 CFU/100 mL, and approximately 66% of samples showed contamination with E. coli. Tank cleaning in the year prior to sampling seems to protect against water contamination. If rainwater collection from roofs is the most efficient mean for providing freshwater to Bermudians, it must not be considered a source of high quality drinking water because of the high levels of microbial contamination.  相似文献   

10.
A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods.  相似文献   

11.
Aim: A new medium, EC‐Blue‐10, containing chromogenic and fluorogenic substrates, KNO3 and sodium pyruvate has been developed for the rapid simultaneous detection and enumeration of total coliforms and Escherichia coli in water. Methods and Results:  Two evaluations of EC‐Blue‐10 were carried out. Firstly, EC‐Blue‐10 was compared with Colilert‐MPN for 96 water samples using MPN for total coliforms and E. coli. Secondly, the detection of coliforms and E. coli were compared using 2400 tubes of EC‐Blue‐10 and Colilert‐MPN. The regression coefficients between EC‐Blue‐10 and Colilert‐MPN for total coliforms and E. coli were 0·91 and 0·89, respectively. For the detection results, the Cohen’s kappa values between the two media were 0·79 for coliforms and 0·72 for E. coli. Conclusions: EC‐Blue‐10 is almost same as Colilert‐MPN for the detection of coliforms and E. coli in surface waters. Further evaluation for EC‐Blue‐10 is needed to verify in different geographical areas. Significance and Impact of the Study: EC‐Blue‐10 is useful method for the rapid and simultaneous detection of total coliforms and E. coli in water sample.  相似文献   

12.
Over a 4-month period, 950 samples of treated drinking water were analyzed for total coliforms (TC) and Escherichia coli by both membrane filtration (MF) and Autoanalysis Colilert presence-absence (AC) techniques. The two tests agreed 97% of the time on the basis of presumptive TC results and 98.5% of the time on the basis of verified TC results. Samples which produced disagreement between the two tests were most often TC positive by MF and TC negative by AC. E. coli was recovered four times: twice by MF only, and twice by AC only but without the diagnostic fluorescence reaction. In two samples, E. coli could not be isolated from fluorescence-positive AC tests. On the basis of these results, the AC test was implemented as the routine analytical procedure for TC but not for E. coli.  相似文献   

13.
C M Lewis  J L Mak 《Applied microbiology》1989,55(12):3091-3094
Over a 4-month period, 950 samples of treated drinking water were analyzed for total coliforms (TC) and Escherichia coli by both membrane filtration (MF) and Autoanalysis Colilert presence-absence (AC) techniques. The two tests agreed 97% of the time on the basis of presumptive TC results and 98.5% of the time on the basis of verified TC results. Samples which produced disagreement between the two tests were most often TC positive by MF and TC negative by AC. E. coli was recovered four times: twice by MF only, and twice by AC only but without the diagnostic fluorescence reaction. In two samples, E. coli could not be isolated from fluorescence-positive AC tests. On the basis of these results, the AC test was implemented as the routine analytical procedure for TC but not for E. coli.  相似文献   

14.
A defined substrate method was developed to simultaneously enumerate total coliforms and Escherichia coli from drinking waters without the need for confirmatory or completed tests. It is a new method based on technology that uses a hydrolyzable substrate as a specific indicator-nutrient for the target microbes. No equipment other than a 35 degrees C incubator and long-wavelength (366-nm) light is necessary. To perform the test, one only has to add water to the powdered ingredients in a tube or flask. If total coliforms are present in the water sample, the solution will change from its normal colorless state (no target microbes present) to yellow. The specific presence of E. coli will cause the same tube to fluoresce under a longwave (366-nm) UV lamp. The test, called Autoanalysis Colilert (AC), was compared with Standard Methods for the Examination of Water and Wastewater 10-tube multiple tube fermentation (MTF) in a national evaluation. Five utilities, representing six U.S. Environmental Protection Agency regions, participated. All water samples came from distribution systems. Split samples from a wide variety of water sources were analyzed for the MPN-versus-MPN comparison. A total of 1,086 tubes were positive by MTF, and 1,279 were positive by AC. There was no statistical difference between MTF and AC. Species identifications from positive tubes confirmed the sensitivity of the AC. A national evaluation of the AC test showed that it: (i) was as sensitive as Standard Methods MTF, (ii) specifically enumerated 1 total coliform per 100 ml, in a maximum of 24 h, (iii) simultaneously enumerated 1 E. coli per 100 ml in the same analysis, (iv) was not subject to false-positive or false-negative results by heterotrophic bacteria, (v) did not require confirmatory tests, (vi) grew injured coliforms, (vii) was easy to inoculate, and (viii) was very easy to interpret.  相似文献   

15.
Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. coli requires two media, an MF transfer, and a total incubation time of 28 h. A newly developed MF method, the MI agar method, containing indoxyl-beta-D-glucuronide and 4-methylumbelliferyl-beta-D-galactopyranoside for the simultaneous detection of E. coli and total coliforms, respectively, by means of their specific enzyme reactions, was compared with the approved method by the use of wastewater-spiked tap water samples. Overall, weighted analysis of variance (significance level, 0.05) showed that the new medium recoveries of total coliforms and E. coli were significantly higher than those of mEndo agar and nutrient agar plus MUG (4-methylumbelliferyl-beta-D-glucuronide), respectively, and the background counts were significantly lower than those of mEndo agar (< 5%). Generally, the tap water source, overall chlorine level, wastewater source, granular activated carbon treatment of the tap water, and method of grouping data by E. coli count for statistical analysis did not affect the performance of the new medium.  相似文献   

16.
A defined substrate method was developed to simultaneously enumerate total coliforms and Escherichia coli from drinking waters without the need for confirmatory or completed tests. It is a new method based on technology that uses a hydrolyzable substrate as a specific indicator-nutrient for the target microbes. No equipment other than a 35 degrees C incubator and long-wavelength (366-nm) light is necessary. To perform the test, one only has to add water to the powdered ingredients in a tube or flask. If total coliforms are present in the water sample, the solution will change from its normal colorless state (no target microbes present) to yellow. The specific presence of E. coli will cause the same tube to fluoresce under a longwave (366-nm) UV lamp. The test, called Autoanalysis Colilert (AC), was compared with Standard Methods for the Examination of Water and Wastewater 10-tube multiple tube fermentation (MTF) in a national evaluation. Five utilities, representing six U.S. Environmental Protection Agency regions, participated. All water samples came from distribution systems. Split samples from a wide variety of water sources were analyzed for the MPN-versus-MPN comparison. A total of 1,086 tubes were positive by MTF, and 1,279 were positive by AC. There was no statistical difference between MTF and AC. Species identifications from positive tubes confirmed the sensitivity of the AC. A national evaluation of the AC test showed that it: (i) was as sensitive as Standard Methods MTF, (ii) specifically enumerated 1 total coliform per 100 ml, in a maximum of 24 h, (iii) simultaneously enumerated 1 E. coli per 100 ml in the same analysis, (iv) was not subject to false-positive or false-negative results by heterotrophic bacteria, (v) did not require confirmatory tests, (vi) grew injured coliforms, (vii) was easy to inoculate, and (viii) was very easy to interpret.  相似文献   

17.
Colilert (Colilert), Readycult Coliforms 100 (Readycult), Chromocult Coliform agar ES (Chromocult), and MI agar (MI) are beta-galactosidase and beta-glucuronidase-based commercial culture methods used to assess water quality. Their analytical performance, in terms of their respective ability to detect different strains of Escherichia coli and total coliforms, had never been systematically compared with pure cultures. Here, their ability to detect beta-glucuronidase production from E. coli isolates was evaluated by using 74 E. coli strains of different geographic origins and serotypes encountered in fecal and environmental settings. Their ability to detect beta-galactosidase production was studied by testing the 74 E. coli strains as well as 33 reference and environmental non-E. coli total coliform strains. Chromocult, MI, Readycult, and Colilert detected beta-glucuronidase production from respectively 79.9, 79.9, 81.1, and 51.4% of the 74 E. coli strains tested. These 4 methods detected beta-galactosidase production from respectively 85.1, 73.8, 84.1, and 84.1% of the total coliform strains tested. The results of the present study suggest that Colilert is the weakest method tested to detect beta-glucuronidase production and MI the weakest to detect beta-galactosidase production. Furthermore, the high level of false-negative results for E. coli recognition obtained by all four methods suggests that they may not be appropriate for identification of presumptive E. coli strains.  相似文献   

18.
The average recovery of Escherichia coli with Colilert was 26% (range 12–42%) and that for coliforms was 35% (range 4–140%, when compared with Dutch standard methods. In samples with low numbers of target organisms, Colilert gave false-negative results and was therefore regarded as an unsuitable alternative for Dutch standard methods.  相似文献   

19.
Rural drinking water systems supplied by untreated groundwater were examined to determine whether coliform or heterotrophic plate count bacteria are capable of escaping entrapment on standard porosity (0.45-micron-pore-size) membrane filters. Filterable bacteria were present in 42% of the 24 groundwater sources examined by using nonselective media (R2A, full strength m-HPC, and 0.1x m-HPC agars). Pseudomonads were the most frequently identified group of filterable bacteria detected. Flavobacterium, Alcaligenes, Acinetobacter, and Achromobacter isolates were also identified. Total coliforms were not recovered from any of the 24 groundwater samples following filtration through 0.45-micron-pore-size membrane filters by using selective M-Endo LES agar or mT7 agar. In addition, none of the isolates identified from nonselective media were coliforms. Similarly, neither total coliforms nor specifically Escherichia coli were detected in these filtrates when Colilert P/A medium was used.  相似文献   

20.
The Colilert defined substrate technology system allows specific, one-step detection of both coliforms and Escherichia coli while claiming to suppress the influence of non-coliform heterotrophs. The Colilert assay was examined in order to determine whether organisms from the genus Aeromonas could interfere and cause production of a false-positive coliform result as aquatic Aeromonas are known to constitute a fraction of the heterotrophic population found in drinking water. Results obtained clearly demonstrate that Aeromonas sp. can elicit a positive coliform type reaction at very low densities. Cell suspensions as low as 1 × 101 cells 10 ml−1 were observed to yield a positive reaction using Colilert reagent 4 weeks short of shelf-life expiry. Use of aged Colilert for monitoring water quality could lead to over-estimation of coliforms as Aeromonas have been identified in many treated drinking water supplies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号