首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

2.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

3.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

4.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

5.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

6.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

7.
In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.  相似文献   

8.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

9.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

10.
Glucagon-secreting alpha 2 cells were isolated from guinea pig pancreatic islets and used for electrophysiological studies of voltage- activated ionic conductances using the patch-clamp technique. The alpha 2 cells differed from beta cells in producing action potentials in the absence of glucose. The frequency of these potentials increased after addition of 10 mM arginine but remained unaffected in the presence of 5- 20 mM glucose. When studying the conductances underlying the action potentials, we identified a delayed rectifying K+ current, an Na+ current, and a Ca2+ current. The K+ current activated above -20 mV and then increased with the applied voltage. The Na+ current developed at potentials above -50 mV and reached a maximal peak amplitude of 550 pA during depolarizing pulses to -15 mV. The Na+ current inactivated rapidly (tau h approximately 0.7 ms at 0 mV). Half-maximal steady state inactivation was attained at -58 mV, and currents could no longer be elicited after conditioning pulses to potentials above -40 mV. The Ca2+ current first became detectable at -50 mV and reached a maximal amplitude of 90 pA (in extracellular [Ca2+] = 2.6 mM) at about -10 mV. Unlike the Na+ current, it inactivated little or not at all. Membrane potential measurements demonstrated that both the Ca2+ and Na+ currents contribute to the generation of the action potential. Whereas there was an absolute requirement of extracellular Ca2+ for action potentials to be elicited at all, suppression of the much larger Na+ current only reduced the upstroke velocity of the spikes. It is suggested that this behavior reflects the participation of a low-threshold Ca2+ conductance in the pacemaking of alpha 2 cells.  相似文献   

11.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

12.
Currents through delayed rectifier-type K+ channels in Schwann cells cultured from rabbit sciatic nerve were studied with patch-clamp techniques. When the internal and external solutions contained physiological concentrations of sodium, the amplitude of these outward currents declined as the cell was depolarized to potentials above about +40 mV, despite the increased driving force. This reduction in the amplitude of outward K+ currents was observed in many cells before the subtraction of leakage currents; it was also observed for ensemble currents recorded in outside-out patches. It was therefore not the result of a leak-subtraction artefact nor of inadequate voltage-clamp control. Several lines of evidence also suggested that it was not the result of the extracellular accumulation of K+. By contrast, when the Na+ ion concentration of the internal solution was nominally zero, the reduction in the amplitude of outward K+ currents at positive membrane potentials was not observed. The apparent amplitude of single-channel currents through two types of K+ channel was reduced by 30 mM internal Na+, apparently as the result of a rapid 'flickery' block. The results suggest that channel block by internal Na+ is largely responsible for the negative slope conductance seen in current-voltage plots of whole-cell K+ currents at positive membrane potentials. In addition, our analysis of single-channel currents suggests that the current-voltage curve for a delayed rectifier channel in rabbit Schwann cells (in the absence of internal Na+) is roughly linear with internal and external K+ concentrations of 140 mM and 5.6 mM, respectively.  相似文献   

13.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

14.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

15.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

16.
In this study, high-conductance Ca2+-activated K+ channels from rat skeletal muscle were incorporated into planar phospholipid bilayers, and discrete blockade of single channels by Ba2+ was studied. With 150 mM K+ held constant in the internal solution, increasing external K+ over the range 100-1,000 mM raises the rate of Ba2+ dissociation. This "enhancement effect," which operates at K+ concentrations 3-4 orders of magnitude higher than those required for the "lockin" effect described previously, depends on applied voltage, saturates with K+ concentration, and is not observed with Na+. The voltage dependence of the Ba2+ off-rate varies with external K+ in a way suggesting that K+, entering the channel from the external side, forces Ba2+ dissociation to the internal solution. With K+ held fixed in the external solution, the Ba2+ off-rate decreases as internal K+ is raised over the range 0-50 mM. This "lock-in" effect is similar to that seen on the external side (Neyton and Miller, 1988), except that the internal lock-in site is of lower affinity and shows only a fivefold preference for K+ over Na+. All the results taken together argue strongly that this channel's conduction pathway contains four sites of very high affinity for K+, all of which may be simultaneously occupied under normal conducting conditions. According to this view, the mutual destabilization resulting from this high ionic occupancy leads to the unusually high conductance of this K+-specific channel.  相似文献   

17.
The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal) side of the membrane revealed that the current amplitude at 0 mV and the single- channel slope conductance fell in the sequence: Ba (2.2 pA, 85 pS) > Sr (2.0 pA, 77 pS) > Ca (1.4 pA, 53 pS) > Mg (1.1 pA, 42 pS). The mean open time of the InsP3R recorded with Ca (2.9 ms) was significantly shorter than with other divalent cations (approximately 5.5 ms). The "anomalous mole fraction effect" was not observed in mixtures of divalent cations (Mg and Ba), suggesting that these channels are single- ion pores. Measurements of InsP3R activity at different intraluminal Ca levels demonstrated that Ca in the submillimolar range did not potentiate channel activity, and that very high levels of intraluminal Ca (> or = 10 mM) decreased channel open probability 5-10-fold. When InsP3R were measured with Ba as a current carrier in the presence of 110 mM cis potassium, a PBa/PK of 6.3 was estimated from the extrapolated value for the reversal potential. When the unitary current through the InsP3R at 0 mV was measured as a function of the permeant ion (Ba) concentration, the half-maximal current occurred at 10 mM trans Ba. The following conclusions are drawn from these data: (a) the conduction properties of InsP3R are similar to the properties of the ryanodine receptor, another intracellular Ca channel, and differ dramatically from the properties of voltage-gated Ca channels of the plasma membrane. (b) The estimated size of the Ca current through the InsP3R under physiological conditions is 0.5 pA, approximately four times less than the Ca current through the ryanodine receptor. (c) The potentiation of InsP3R by intraluminal Ca in the submillimolar range remains controversial. (d) A quantitative model that explains the inhibitory effects of high trans Ca on InsP3R activity was developed and the kinetic parameters of InsP3R gating were determined.  相似文献   

18.
L-type Ca channels from porcine cardiac sarcolemma were incorporated into planar lipid bilayers. We characterized interactions of permeant and blocking ions with the channel's pore by (a) studying the current-voltage relationships for Ca2+ and Na+ when equal concentrations of the ions were present in both internal and external solutions, (b) testing the dose-dependent block of Ba2+ currents through the channels by internally applied cadmium, and (c) examining the dose and voltage dependence of the block of Na+ currents through the channels by internally and externally applied Ca2+. We found that the I-V relationship for Na+ appears symmetrical through the origin when equal concentrations of Na+ are present on both sides of the channel (gamma = 90 pS in 200 mM NaCl). The conductance for outward Ca2+ currents with 100 mM Ca2+ on both sides of the channel is approximately 8 pS, a value identical to that observed for inward currents when 100 mM Ca2+ was present outside only. This provides evidence that ions pass through the channel equally well regardless of the direction of net flux. In addition, we find that internal Cd2+ is as effective as external Cd2+ in blocking Ba2+ currents through the channels, again suggesting identical interactions of ions with each end of the pore. Finally, we find that micromolar Ca2+, either in the internal or in the external solution, blocks Na+ currents through the channels. The affinity for internally applied Ca2+ appears the same as that for externally applied Ca2+. The voltage dependence of the Ca(2+)-block suggests that the sites to which Ca2+ binds are located approximately 15% and approximately 85% of the electric field into the pore. Taken together, these data provide direct experimental evidence for the existence of at least two ion binding sites with high affinity for Ca2+, and support the idea that the sites are symmetrically located within the electric field across L-type Ca channels.  相似文献   

19.
The voltage-dependent K+ channel was examined in enzymatically isolated guinea pig hepatocytes using whole-cell, excised outside-out and inside- out configurations of the patch-clamp technique. The resting membrane potential in isolated hepatocytes was -25.3 +/- 4.9 mV (n = 40). Under the whole-cell voltage-clamp, the time-dependent delayed rectifier outward current was observed at membrane potentials positive to -20 mV at physiological temperature (37 degrees C). The reversal potential of the current, as determined from tail current measurements, shifted by approximately 57 mV per 10-fold change in the external K+ concentration. In addition, the current did not appear when K+ was replaced with Cs+ in the internal and external solutions, indicating that the current was carried by K+ ions. The envelope test of the tails demonstrated that the growth of the tail current followed that of the current activation. The ratio between the activated current and the tail amplitude was constant during the depolarizing step. The time course of growth and deactivation of the tail current were best described by a double exponential function. The current was suppressed in Ca(2+)-free, 5 mM EGTA internal or external solution (pCa > 9). The activation curve (P infinity curve) was not shifted by changing the internal Ca2+ concentration ([Ca2+]i). The current was inhibited by bath application of 4-aminopyridine or apamin. alpha 1-Adrenergic stimulation with noradrenaline enhanced the current but beta-adrenergic stimulation with isoproterenol had no effect on the current. In single- channel recordings from outside-out patches, unitary current activity was observed by depolarizing voltage-clamp steps whose slope conductance was 9.5 +/- 2.2 pS (n = 10). The open time distribution was best described by a single exponential function with the mean open lifetime of 18.5 +/- 2.6 ms (n = 14), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 2.0 +/- 0.3 ms (n = 14) and that for the slow component of 47.7 +/- 5.9 ms (n = 14). Ensemble averaged current exhibited delayed rectifier nature which was consistent with whole-cell measurements. In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The concentration of Ca2+ at the half-maximal activation was 0.031 microM. These results suggest that guinea pig hepatocytes possess voltage-gated delayed rectifier K+ channels which are modified by intracellular Ca2+.  相似文献   

20.
Relief of Na+ block of Ca2+-activated K+ channels by external cations   总被引:10,自引:6,他引:4       下载免费PDF全文
The flickery block of single Ca2+-activated K+ channels that is produced by internally applied Na+ can be relieved by millimolar concentrations of external K+. This effect of K+ on the kinetics of Na+ block was studied by the method of amplitude distribution analysis described in the companion paper (Yellen, G., 1984b, J. Gen. Physiol., 84:157-186). It appears that K+ relieves block by increasing the exit rate of the blocking ion from the channel, not by competitively slowing its entrance rate. This suggests that a K ion that enters the channel from the outside can expel the blocking Na ion, which entered the channel from the inside. Cs+, which cannot carry current through the channel, and Rb+, which carries a reduced current through the channel, are just as effective as K+ in relieving the block by internal Na+. The kinetics of block by internal nonyltriethylammonium (C9) are unaffected by the presence of these ions in the external bathing solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号