首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Reactive species of oxygen and nitrogen have been collectively implicated in pulmonary oxygen toxicity, but the contributions of specific molecules are unknown. Therefore, we assessed the roles of several reactive species, particularly nitric oxide, in pulmonary injury by exposing wild-type mice and seven groups of genetically altered mice to >98% O2 at 1, 3, or 4 atmospheres absolute. Genetically altered animals included knockouts lacking either neuronal nitric oxide synthase (nNOS(-/-)), endothelial nitric oxide synthase (eNOS(-/-)), inducible nitric oxide synthase (iNOS(-/-)), extracellular superoxide dismutase (SOD3(-/-)), or glutathione peroxidase 1 (GPx1(-/-)), as well as two transgenic variants (S1179A and S1179D) having altered eNOS activities. We confirmed our earlier finding that normobaric hyperoxia (NBO2) and hyperbaric hyperoxia (HBO2) result in at least two distinct but overlapping patterns of pulmonary injury. Our new findings are that the role of nitric oxide in the pulmonary pathophysiology of hyperoxia depends both on the specific NOS isozyme that is its source and on the level of hyperoxia. Thus, iNOS predominates in the etiology of lung injury in NBO2, and SOD3 provides an important defense. But in HBO2, nNOS is a major contributor to pulmonary injury, whereas eNOS is protective. In addition, we demonstrated that nitric oxide derived from nNOS is involved in a neurogenic mechanism of HBO2-induced lung injury that is linked to central nervous system oxygen toxicity through adrenergic/cholinergic pathways.  相似文献   

2.
3.
Treatment with endotoxin protects rats against lung injury during hyperoxia (greater than 98% oxygen at 1 atmosphere absolute for 60 h). This study demonstrates that serum from endotoxin-treated donor rats also protects recipients from oxygen toxicity. Rats treated with serum from saline-treated donors were not protected, and protection was not explained by residual endotoxin in protective sera. Unlike endotoxin-protected rats (where lung antioxidant enzyme activity is elevated after hyperoxia), postexposure superoxide dismutase (SOD) and catalase (CAT) activities in the lungs of serum-protected rats were not affected. Levels of tumor necrosis factor (TNF) and interleukin 1 (IL-1) in protective sera were increased. This study demonstrates that increases in lung SOD and CAT activity are not required for endotoxin protection from hyperoxia and suggests that TNF and IL-1 may participate in the mechanism of endotoxin protection.  相似文献   

4.
Hyperoxia-induced lung injury limits the application of mechanical ventilation on rescuing the lives of premature infants and seriously ill and respiratory failure patients, and its mechanisms are not completely understood. In this article, we focused on the relationship between hyperoxia-induced lung injury and reactive oxygen species (ROS), reactive nitrogen species (RNS), mitochondria damage, as well as apoptosis in the pulmonary epithelial II cell line RLE-6TN. After exposure to hyperoxia, the cell viability was significantly decreased, accompanied by the increase in ROS, nitric oxide (NO), inflammatory cytokines, and cell death. Furthermore, hyperoxia triggered the loss of mitochondrial membrane potential (▵Ψm), thereby promoting cytochrome c to release from mitochondria to cytoplasm. Further studies conclusively showed that the Bax/Bcl-2 ratio was enlarged to activate the mitochondria-dependent apoptotic pathway after hyperoxia treatment. Intriguingly, the effects of hyperoxia on the level of ROS, NO and inflammation, mitochondrial damage, as well as cell death were reversed by free radical scavengers N-acetylcysteine and hemoglobin. In addition, a hyperoxia model of neonatal Sprague-Dawley (SD) rats presented the obvious characteristics of lung injury, such as a decrease in alveolar numbers, alveolar mass edema, and disorganized pulmonary structure. The effects of hyperoxia on ROS, RNS, inflammatory cytokines, and apoptosis-related proteins in lung injury tissues of neonatal SD rats were similar to that in RLE-6TN cells. In conclusion, mitochondria are a primary target of hyperoxia-induced free radical, whereas ROS and RNS are the key mediators of hyperoxia-induced cell apoptosis via the mitochondria-dependent pathway in RLE-6TN cells.  相似文献   

5.
Increased cellular generation of partially reduced species of oxygen mediates the toxicity of hyperoxia to cultured endothelial cells and rats exposed to 95-100% oxygen. Liposomal entrapment and intracellular delivery of superoxide dismutase (SOD) to cultured porcine aortic endothelial cells increased the specific activity of cellular SOD up to 15-fold. The liposome-mediated augmentation of SOD activity persisted in cell monolayers and rendered these cells resistant to oxygen-induced injury in a cell SOD activity-dependent manner. Addition of free SOD to culture medium had no effect on cell SOD activity or resistance to oxygen toxicity. SOD and catalase-containing liposomes injected i.v. into rats increased lung-associated enzyme specific activities two- to fourfold. Liposome entrapment of both SOD and catalase significantly increased the circulating half-lives of these enzymes and was critical for prevention of in vivo oxygen toxicity. Free SOD and catalase injected i.v. in the absence or presence of control liposomes did not increase corresponding lung enzyme activities or survival time in 100% oxygen. These studies show that O2- and H2O2 are important mediators of oxygen toxicity and that intracellular delivery of oxygen protective enzymes can reduce tissue injury owing to overproduction of partially reduced oxygen species.  相似文献   

6.
Lung fibrosis is an ultimate consequence of pulmonary oxygen toxicity in human and animal models. Excessive production and deposition of extracellular matrix proteins, e.g., collagen-I, is the most important feature of pulmonary fibrosis in hyperoxia-induced lung injury. In this study, we investigated the roles of RhoA and reactive oxygen species (ROS) in collagen-I synthesis in hyperoxic lung fibroblasts and in a mouse model of oxygen toxicity. Exposure of human lung fibroblasts to hyperoxia resulted in RhoA activation and an increase in collagen-I synthesis and cell proliferation. Inhibition of RhoA by C3 transferase CT-04, dominant-negative RhoA mutant T19N, or RhoA siRNA prevented hyperoxia-induced collagen-I synthesis. The constitutively active RhoA mutant Q63L mimicked the effect of hyperoxia on collagen-I expression. Moreover, the Rho kinase inhibitor Y27632 inhibited collagen-I synthesis in hyperoxic lung fibroblasts and fibrosis in mouse lungs after oxygen toxicity. Furthermore, the ROS scavenger tiron attenuated hyperoxia-induced increases in RhoA activation and collagen-I synthesis in lung fibroblasts and mouse lungs after oxygen toxicity. More importantly, we found that hyperoxia induced separation of guanine nucleotide dissociation inhibitor (GDI) from RhoA in lung fibroblasts and mouse lungs. Further, tiron prevented the separation of GDI from RhoA in hyperoxic lung fibroblasts and mouse lungs with oxygen toxicity. Together, these results indicate that ROS-induced separation of GDI from RhoA leads to RhoA activation with oxygen toxicity. ROS-dependent RhoA activation is responsible for the increase in collagen-I synthesis in hyperoxic lung fibroblasts and mouse lungs.  相似文献   

7.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

8.
Gavino R  Johnson L  Bhandari V 《Cytokine》2002,20(6):247-255
The response of the fetal rat Type II pneumocyte (FTIIP), the stem cell of the alveolar epithelium, to hyperoxia would be helpful to understand the effects of oxygen-induced injury to the immature lung. In such a scenario, the presence of nitric oxide (NO) may have a protective or detrimental effect. Our goals were to evaluate the release of cytokines and apoptotic cell death in freshly isolated FTIIP (19-day) in the presence of 95% O(2) and/or NO. The effects of dexamethasone and pentoxifylline on the FTIIP cytokine response were also studied. There was no significant difference in the levels of IL-1beta and IL-10 from FTIIP, in room air, hyperoxia and/or NO at 2, 6 and 24 h. However, IL-6 release was significantly higher, when measured over time, after 2, 6 and 24 h of exposure to hyperoxia and NO. Dexamethasone in the presence of hyperoxia and/or NO increased the release of IL-10 at 24 h. There was increased apoptosis in FTIIP exposed to hyperoxia alone and in combination with NO; this was significantly attenuated in the presence of dexamethasone and pentoxifylline. We speculate that the cytoprotective effects of dexamethasone in the immature lung may, in part, be mediated via IL-10.  相似文献   

9.
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.  相似文献   

10.
This study investigated the ability of aerosolized bovine lactoferrin (bLF) to protect the lungs from injury induced by chronic hyperoxia. Female CD-1 mice were exposed to hyperoxia (FiO2 = 80 %) for 7 days to induce lung injury and fibrosis. The therapeutic effects of bLF, administered via an aerosol delivery system, on the chronic lung injury induced by this period of hyperoxia were measured by bronchoalveolar lavage, lung histology, cell apoptosis, and inflammatory cytokines in the lung tissues. After exposure to hyperoxia for 7 days, the survival of the mice was significantly decreased to 20 %. The protective effects of bLF against hyperoxia were further confirmed by significant reductions in lung edema, total cell numbers in bronchoalveolar lavage fluid, inflammatory cytokines (IL-1β and IL-6), pulmonary fibrosis, and apoptotic DNA fragmentation. The aerosolized bLF protected the mice from oxygen toxicity and increased the survival fraction to 66.7 % in the hyperoxic model. The results support the use of an aerosol therapy with bLF in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure or chronic obstructive pulmonary disease.  相似文献   

11.
Oxygen toxicity is the most severe side effect of oxygen therapy in neonates and adults. Pulmonary damage of oxygen toxicity is related to the overproduction of reactive oxygen species (ROS). In the present study, we investigated the effect of hyperoxia on the production of peroxynitrite in pulmonary artery endothelial cells (PAEC) and mouse lungs. Incubation of PAEC under hyperoxia (95% O2) for 24 h resulted in an increase in peroxynitrite formation. Uric acid, a peroxynitrite scavenger, prevented hyperoxia-induced increase in peroxynitrite. The increase in peroxynitrite formation is accompanied by increases in nitric oxide (NO) release and endothelial NO synthase (eNOS) activity. We have previously reported that association of eNOS with β-actin increases eNOS activity and NO production in lung endothelial cells. To study whether eNOS-β-actin association contributes to increased peroxynitrite production, eNOS-β-actin interaction were inhibited by reducing β-actin availability or by using a synthetic peptide (P326TAT) containing a sequence corresponding to the actin binding site on eNOS. We found that disruption of eNOS-β-actin interaction prevented hyperoxia-induced increases in eNOS-β-actin association, eNOS activity, NO and peroxynitrite production, and protein tyrosine nitration. Hyperoxia failed to induce the increases in eNOS activity, NO and peroxynitrite formation in COS-7 cells transfected with plasmids containing eNOS mutant cDNA in which amino acids leucine and tryptophan were replaced with alanine in the actin binding site on eNOS. Exposure of mice to hyperoxia resulted in significant increases in eNOS-β-actin association, eNOS activity, and protein tyrosine nitration in the lungs. Our data indicate that increased association of eNOS with β-actin in PAEC contributes to hyperoxia-induced increase in the production of peroxynitrite which may cause nitrosative stress in pulmonary vasculature.  相似文献   

12.
Free radicals and oxidant gases, such as oxygen (O2) and nitrogen dioxide (NO2), are injurious to mammalian lung cells. One of the postulated mechanisms for the cellular injury associated with these gases and free radicals involves peroxidative cleavage of membrane lipids. We have hypothesized that oxidant-related alterations in membrane lipids may result in disordering of the plasma membrane lipid bilayer, leading to derangements in membrane-dependent functions. To test this hypothesis, we examined the effect of exposure to high partial pressures of O2 or NO2 on the physical state and function of pulmonary endothelial cell plasma membranes. Both hyperoxia (95% O2 at 1 ATA) and NO2 exposure (5 ppm) caused early and significant decreases in fluidity in the hydrophobic interior of the plasma membrane lipid bilayer and subsequent depressions in plasma membrane-dependent transport of 5-hydroxytryptamine. Lipid domains at the surface of pulmonary endothelial cell plasma membranes are more susceptible to NO2-induced injury than to hyperoxic injury. Alterations in the fluidity of these more superficial domains are associated with derangements in surface dependent functions, such as receptor-ligand interaction. These results support our hypothesis and advance our understanding of how the chemical events of free radical injury associated with high O2 and NO2 tensions are translated into functional manifestations of O2 and NO2-induced cellular injury.  相似文献   

13.
Endotoxin greatly reduces lung injury and pleural effusions in adult rats exposed to normobaric hyperoxia (greater than 98% oxygen for 60 hours). This study reports that serum from endotoxin treated donor rats protects serum recipients against hyperoxic lung injury without altering lung superoxide dismutase (SOD) activity. Rats pretreated with endotoxin alone were protected and exhibited an increase in lung SOD activity as previously reported by others. Protection by serum was not due to the transfer of residual endotoxin or SOD. These results show that protection from oxygen toxicity can occur in rats without an increase in lung SOD and suggest that a serum factor may be involved.  相似文献   

14.
Acute respiratory distress syndrome (ARDS) can be associated with various disorders. Among these, coronavirus infection may cause life-threatening severe acute respiratory syndrome (SARS). In this review, we present animal models and techniques for the study of ARDS, and discuss the roles and possible mechanisms of various chemical factors, including nitric oxide (NO). Our early work revealed that cerebral compression elicits severe hemorrhagic pulmonary edema (PE), leading to central sympathetic activation that results in systemic vasoconstriction. The consequence of systemic vasoconstriction is volume and pressure loading in the pulmonary circulation. Vasodilators, but not oxidant radical scavengers, are effective in the prevention of centrogenic PE. In isolated perfused lung, exogenous and endogenous NO enhances lung injury following air embolism and ischemia/reperfusion. In contrast, NO synthase (NOS) inhibitors reverse such lung injury. Although NO is important in maintaining vasodilator tone, hypoxia-induced pulmonary vasoconstriction is accompanied by an increase instead of a decrease in NO release. In animal and isolated lung studies, endotoxin produces acute lung injury that is associated with increases in cytokines and inducible NOS mRNA expression, suggesting that NO is toxic to the lung in endotoxin shock. Recently, we reported several rare cases that indicate that ARDS in patients with Japanese B encephalitis, lymphangitis with breast cancer and fat embolism is caused by different mechanisms. Our early and recent studies on ARDS and PE may provide information for clinical practice and the understanding of the pathogenesis of SARS.  相似文献   

15.
Hyperoxia-induced lung injury complicates the care of many critically ill patients who receive supplemental oxygen therapy. Hyperoxic injury to lung tissues is mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines. IFN-gamma is known to be induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. To determine whether IFN-gamma contributes to hyperoxia-induced lung injury, we first used anti-mouse IFN-gamma antibody to blockade IFN-gamma activity. Administration of anti-mouse IFN-gamma antibody inhibited hyperoxia-induced increases in pulmonary alveolar permeability and neutrophil migration into lung air spaces. To confirm that IFN-gamma contributes to hyperoxic lung injury, we then simultaneously exposed IFN-gamma-deficient (IFN-gamma-/-) mice and wild-type mice to hyperoxia. In the early phase of hyperoxia, permeability changes and neutrophil migration were significantly reduced in IFN-gamma-/- mice compared with wild-type mice, although the differences in permeability changes and neutrophil migration between IFN-gamma-/- mice and wild-type mice were not significant in the late phase of hyperoxia. The concentrations of IL-12 and IL-18, two cytokines that play a role in IFN-gamma induction, significantly increased in bronchoalveolar lavage fluid after exposure to hyperoxia in both IFN-gamma-/- mice and wild-type mice, suggesting that hyperoxia initiates upstream events that result in IFN-gamma production. Although there was no significant difference in overall survival, IFN-gamma-/- mice had a better early survival rate than did the wild-type mice. Therefore, these data strongly suggest that IFN-gamma is a key molecular contributor to hyperoxia-induced lung injury.  相似文献   

16.
Topical administration of nitric oxide (NO) by inhalation is currently used as therapy in various pulmonary diseases, but preconditioning with NO to ameliorate lung ischemia/reperfusion (I/R) injury has not been fully evaluated. In this study, we investigated the effects of NO inhalation on functional pulmonary parameters using an in situ porcine model of normothermic pulmonary ischemia. After left lateral thoracotomy, left lung ischemia was maintained for 90 min, followed by a 5h reperfusion period (group I, n = 7). In group II (n = 6), I/R was preceded by inhalation of NO (10 min, 15 ppm). Animals in group III (n = 7) underwent sham surgery without NO inhalation or ischemia. In order to evaluate the effects of NO preconditioning, lung functional and hemodynamic parameters were measured, and the zymosan-stimulated release of reactive oxygen species in arterial blood was determined. Animals in group I developed significant pulmonary I/R injury, including pulmonary hypertension, a decreased pO(2) level in pulmonary venous blood of the ischemic lung, and a significant increase of the stimulated release of reactive oxygen species. All these effects were prevented, or the onset (release of reactive oxygen species) was delayed, by NO inhalation. These results indicate that preconditioning by NO inhalation before lung ischemia is protective against I/R injury in the porcine lung.  相似文献   

17.
18.
Nitric oxide (NO) shows cytotoxicity, and its reaction products with reactive oxygen species, such as peroxynitrite, are potentially more toxic. To examine the role of O2 in the NO toxicity, we have examined the proliferation of cultured human umbilical vein endothelial cells in the presence or absence of NO donor, ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-++ +ium-1,2-diolate) (DETA-NONOate) (100-500 microM), under normoxia (air), hypoxia (< 0.04% O2) or hyperoxia (88-94% O2). It was found that the dose dependency on NONOate was little affected by the ambient O2 concentration, showing no apparent synergism between the two treatments. We have also examined the effects of exogenous NO under normoxia and hyperoxia on the cellular activities of antioxidant enzymes involved in the H2O2 elimination, since many of them are known to be inhibited by NO or peroxynitrite in vitro. Under normoxia DETA-NONOate (500 microM) caused 25% decrease in catalase activity and 30% increases in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in 24h. Under hyperoxia NO caused about 25% decreases in activities of catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. The H2O2 removal rate by NO-treated cells was computed on the mathematical model for the enzyme system. It was concluded that the cellular antioxidant function is little affected by NO under normoxia but that it is partially impaired when the cells are exposed to NO under hyperoxia.  相似文献   

19.
Cytokines are peptides that are produced by virtually every nucleated cell type in the body, possess overlapping biological activities, exert different effects at different concentrations, can either synergize or antagonize the effects of other cytokines, are regulated in a complex manner, and function via cytokine cascades. Hyperoxia-induced acute lung injury (HALI) is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell injury/death. Some of these effects are orchestrated by cytokines. There are significant differences in the response of the developing versus the adult lung to hyperoxia. We review here cytokines (and select growth factors) that are involved in tolerance toward HALI in animal models. Increased cytokine expression and release have a cascade effect in HALI. IL-1 precedes the increase in IL-6 and CINC-1/IL-8 and this seems to predate the influx of inflammatory cells. Inflammatory cells in the alveolar space amplify the lung damage. Other cytokines that are primarily involved in this inflammatory response include IFN-gamma, MCP-1, and MIP-2. Certain cytokines (and growth factors) seem to ameliorate HALI by affecting cell death pathways. These include GM-CSF, KGF, IL-11, IL-13, and VEGF. There are significant differences in the type and temporal sequence of cytokine expression and release in the adult and newborn lung in response to hyperoxia. The newborn lung is greatly resistant to hyperoxia compared to the adult. The delayed increase in lung IL-1 and IL-6 in the newborn could induce protective factors that would help in the resolution of hyperoxia-induced injury. Designing a therapeutic approach to counteract oxygen toxicity in the adult and immature lung first needs understanding of the unique responses in each scenario.  相似文献   

20.
Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号