首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang JH  Janas AM  Olson WJ  Wu L 《Journal of virology》2007,81(17):8933-8943
Dendritic cells (DCs) potently stimulate the transmission of human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells. Immature DCs (iDCs) located in submucosal tissues can capture HIV-1 and migrate to lymphoid tissues, where they become mature DCs (mDCs) for effective antigen presentation. DC maturation promotes HIV-1 transmission; however, the underlying mechanisms remain unclear. Here we have compared monocyte-derived iDCs and mDCs for their efficiencies and mechanisms of HIV-1 transmission. We have found that mDCs significantly facilitate HIV-1 endocytosis and efficiently concentrate HIV-1 at virological synapses, which contributes to mDC-enhanced viral transmission, at least in part. mDCs were more efficient than iDCs in transferring HIV-1 to various types of target cells independently of C-type lectins, which partially accounted for iDC-mediated HIV-1 transmission. Efficient HIV-1 trans-infection mediated by iDCs and mDCs required contact between DCs and target cells. Moreover, rapid HIV-1 degradation occurred in both iDCs and mDCs, which correlated with the lack of HIV-1 retention-mediated long-term viral transmission. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission, suggesting that HIV-1 exploits mDCs to facilitate its dissemination within lymphoid tissues.  相似文献   

2.
3.
LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-, but not IL-1. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.  相似文献   

4.
5.
Monocytes can differentiate into various cell types with unique specializations depending on their environment. Under certain inflammatory conditions, monocytes upregulate expression of the dendritic cell marker CD11c together with MHC and costimulatory molecules. These phenotypic changes indicate monocyte differentiation into a specialized subset of dendritic cells (DCs), often referred to as monocyte-derived DCs or inflammatory DCs (iDCs), considered important mediators of immune responses under inflammatory conditions triggered by infection or vaccination. To characterize the relative contribution of cDCs and iDCs under conditions that induce strong immunity to coadministered Ags, we analyzed the behavior of spleen monocytes in response to anti-CD40 treatment. We found that under sterile inflammation in mice triggered by CD40 ligation, spleen monocytes can rapidly and uniformly exhibit signs of activation, including a surface phenotype typically associated with their conversion into DCs. These inflammatory monocytes remain closely related to their monocytic lineage, preserving expression of CD115, scavenging function, tissue distribution and poor capacity for Ag presentation characteristic of their monocyte precursors. In addition, 3-4 d after delivery of the inflammatory stimuli, these cells reverted to a monocyte-associated phenotype typical of the steady state. These findings indicate that, in response to anti-CD40 treatment, spleen monocytes are activated and express certain DC surface markers without acquiring functional characteristics associated with DCs.  相似文献   

6.
7.
APC dysfunction has been postulated to mediate some of the parasite-specific T cell unresponsiveness seen in patent filarial infection. We have shown that live microfilariae of Brugia malayi induce caspase-dependent apoptosis in human monocyte-derived dendritic cells (DCs) in vitro. This study addresses whether apoptosis observed in vitro extends to patent filarial infections in humans and is reflected in the number of circulating myeloid DCs (mDCs; CD11c(-)CD123(lo)) in peripheral blood of infected microfilaremic individuals. Utilizing flow cytometry to identify DC subpopulations (mDCs and plasmacytoid DCs [pDCs]) based on expression of CD11c and CD123, we found a significant increase in numbers of circulating mDCs (CD11c(+)CD123(lo)) in filaria-infected individuals compared with uninfected controls from the same filaria-endemic region of Mali. Total numbers of pDCs, monocytes, and lymphocytes did not differ between the two groups. To investigate potential causes of differences in mDC numbers between the two groups, we assessed chemokine receptor expression on mDCs. Our data indicate that filaria-infected individuals had a lower percentage of circulating CCR1(+) mDCs and a higher percentage of circulating CCR5(+) mDCs and pDCs. Finally, live microfilariae of B. malayi were able to downregulate cell-surface expression of CCR1 on monocyte-derived DCs and diminish their calcium flux in response to stimulation by a CCR1 ligand. These findings suggest that microfilaria are capable of altering mDC migration through downregulation of expression of some chemokine receptors and their signaling functions. These observations have major implications for regulation of immune responses to these long-lived parasites.  相似文献   

8.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.  相似文献   

9.
Subcellular localization of Toll-like receptor 3 in human dendritic cells   总被引:34,自引:0,他引:34  
Toll-like receptor (TLR)3 recognizes dsRNA and transduces signals to activate NF-kappaB and IFN-beta promoter. Type I IFNs (IFN-alpha/beta) function as key cytokines in anti-viral host defense. Human fibroblasts express TLR3 on the cell surface, and anti-TLR3 mAb inhibits dsRNA-induced IFN-beta secretion by fibroblasts, suggesting that TLR3 acts on the cell surface to sense viral infection. In this study, we examined the expression and localization of human TLR3 in various DC subsets using anti-TLR3 mAb. In monocyte-derived immature dendritic cells (iDCs), TLR3 predominantly resided inside the cells but not on the cell surface. iDCs produced IL-12p70 and IFN-alpha and -beta in response to poly(I:C). Similar response was observed in iDCs treated with rotavirus-derived dsRNA. These responses could not be blocked by pretreatment of the cells with anti-TLR3 mAb. In CD11c(+) blood DCs, cytoplasmic retention of TLR3 was also observed as in monocyte-derived iDCs, again endorsing a different TLR3 distribution profile from fibroblasts. In precursor DC2, however, TLR3 could not be detected inside or outside the cells. Of note, there was a putative centrosomal protein that shared an epitope with TLR3 in myeloid DCs and precursor DC2, but not peripheral blood monocytes. Immunoelectron microscopic analysis revealed that TLR3, when stably expressed in the murine B cell line Ba/F3, was specifically accumulated in multivesicular bodies, a subcellular compartment situated in endocytic trafficking pathways. Thus, regulation and localization of TLR3 are different in each cell type, which may reflect participation of cell type-specific multiple pathways in antiviral IFN induction via TLR3.  相似文献   

10.
In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.  相似文献   

11.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

12.
We examined the ability of human monocyte-derived interleukin (IL)-10-induced semi-mature dendritic cells (semi-mDCs) that had been pulsed with soluble protein and necrotic cellular fragments to induce an antigen (Ag)-specific anergy in CD4(+) and CD8(+) T cells. IL-10 converted normal immature DCs (iDCs) into semi-mDCs during the maturation. In contrast to normal iDCs and mature DCs, IL-10-induced semi-mDCs as well as IL-10-treated iDCs not only had reduced their allogeneic T cell-stimulatory capacity, but also induced an allogeneic Ag-specific anergy in T cells. Normal mDCs that had been pulsed with tetanus toxin (TT) or allogeneic necrotic cellular fragments caused further activation of TT-specific CD4(+) T cells or allogeneic fibroblast-specific CD8(+) T cells, Ag-pulsed IL-10-induced semi-mDCs induced an anergic state in both cell types. Thus, our results suggest that IL-10-induced semi-mDCs induce an Ag-specific anergy in CD4(+) and CD8(+) T cells via presentation of the internalized protein and cross-presentation of the phagocytosed cellular fragments.  相似文献   

13.
Mature dendritic cells (mDCs) undergo "exhaustion" in producing cytokines. Nevertheless, whether this "exhaustion" of mDCs is selective to certain cytokines, or whether mDCs have specific cytokine-producing profiles has yet to be defined. Herein, we investigated the cytokine production in vitro by immature DCs (iDCs) and LPS-induced mDCs. Compared to iDCs, mDCs produced comparable levels of IL-6 and TNF-alpha. Strikingly, mDCs produced significantly higher IFN-gamma and IL-10. IL-12 production of mDCs was suppressed. Kinetic studies of the responses of iDCs and mDCs to LPS or CD40L showed that mDCs acquired progressively heightened activity in producing IFN-gamma and IL-10. TNF-alpha-, IL-6-producing capability of mDCs was maintained. Nevertheless, IL-12 production by mDCs was not recovered at any time point. Mature DCs were potent in priming both Th1 and Th2 cells. In conclusion, upon maturation, DCs are reprogrammed with a distinct cytokine-secreting profile, which may play an important role in regulating T cell functions.  相似文献   

14.
Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of na?ve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.  相似文献   

15.
Clonal origin and evolution of a transmissible cancer   总被引:9,自引:0,他引:9  
Murgia C  Pritchard JK  Kim SY  Fassati A  Weiss RA 《Cell》2006,126(3):477-487
The transmissible agent causing canine transmissible venereal tumor (CTVT) is thought to be the tumor cell itself. To test this hypothesis, we analyzed genetic markers including major histocompatibility (MHC) genes, microsatellites, and mitochondrial DNA (mtDNA) in naturally occurring tumors and matched blood samples. In each case, the tumor is genetically distinct from its host. Moreover, tumors collected from 40 dogs in 5 continents are derived from a single neoplastic clone that has diverged into two subclades. Phylogenetic analyses indicate that CTVT most likely originated from a wolf or an East Asian breed of dog between 200 and 2500 years ago. Although CTVT is highly aneuploid, it has a remarkably stable genotype. During progressive growth, CTVT downmodulates MHC antigen expression. Our findings have implications for understanding genome instability in cancer, natural transplantation of allografts, and the capacity of a somatic cell to evolve into a transmissible parasite.  相似文献   

16.
The main function of dendritic cells (DCs) is to induce adaptive immune response through Ag presentation and specific T lymphocyte activation. However, IFN-alpha- or IFN-gamma-stimulated CD11c+ blood DCs and IFN-beta-stimulated monocyte-derived DCs were recently reported to express functional TNF-related apoptosis-inducing ligand (TRAIL), suggesting that DCs may become cytotoxic effector cells of innate immunity upon appropriate stimulation. In this study, we investigate whether dsRNA and CD40 ligand (CD40L), that were characterized as potent inducers of DC maturation, could also stimulate or modulate DC cytotoxicity toward tumoral cells. We observed that dsRNA, but not CD40L, is a potent inducer of TRAIL expression in human monocyte-derived DCs. As revealed by cytotoxicity assays, DCs acquire the ability to kill tumoral cells via the TRAIL pathway when treated with dsRNA. More precisely, dsRNA is shown to induce IFN-beta synthesis that consecutively mediates TRAIL expression by the DCs. In contrast, we demonstrate that TRAIL expression in dsRNA- or IFN-alpha-treated DCs is potently inhibited after CD40L stimulation. Unexpectedly, CD40L-activated DCs still developed cytotoxicity toward tumoral cells. This latter appeared to be partly mediated by TNF-alpha induction and a yet unidentified pathway. Altogether, these results demonstrate that dsRNA and CD40L, that were originally characterized as maturation signals for DCs, also stimulate their cytotoxicity that is mediated through TRAIL-dependent or -independent mechanisms.  相似文献   

17.
Tumors exploit several strategies to evade immune recognition, including the production of a large number of immunosuppressive factors, which leads to reduced numbers and impaired functions of dendritic cells (DCs) in the vicinity of tumors. We have investigated whether a mucin released by tumor cells could be involved in causing these immunomodulating effects on DCs. We used a recombinant purified form of the MUC1 glycoprotein, an epithelial associated mucin that is overexpressed, aberrantly glycosylated, and shed during cancer transformation. The O-glycosylation profile of the recombinant MUC1 glycoprotein (ST-MUC1) resembled that expressed by epithelial tumors in vivo, consisting of large numbers of sialylated core 1 (sialyl-T, ST) oligosaccharides. When cultured in the presence of ST-MUC1, human monocyte-derived DCs displayed a modified phenotype with decreased expression of costimulatory molecules (CD86, CD40), Ag-presenting molecules (DR and CD1d), and differentiation markers (CD83). In contrast, markers associated with an immature phenotype, CD1a and CD206 (mannose receptor), were increased. This effect was already evident at day 4 of DC culture and was dose dependent. The modified phenotype of DCs corresponded to an altered balance in IL-12/IL-10 cytokine production, with DC expressing an IL-10(high)IL-12(low) phenotype after exposure to ST-MUC1. These DCs were defective in their ability to induce immune responses in both allogeneic and autologous settings, as detected in proliferation and ELISPOT assays. The altered DC differentiation and Ag presentation function induced by the soluble sialylated tumor-associated mucin may represent a mechanism by which epithelial tumors can escape immunosurveillance.  相似文献   

18.

Background

HIV-1 Protease Inhibitors, namely PIs, originally designed to inhibit HIV-1 aspartic protease, can modulate the immune response by mechanisms largely unknown, and independent from their activity on viral replication. Here, we analyzed the ability of PIs to interfere with differentiation program of monocytes toward dendritic cell (DCs) lineage, a key process in the inflammatory response.

Methodology/Principal Findings

Monocytes from healthy donors were isolated and induced to differentiate in vitro in the presence or absence of saquinavir, ritonavir, nelfinavir, indinavir or amprenavir (sqv, rtv, nlfv, idv, apv, respectively). These drugs demonstrated a differential ability to sustain the generation of immature DCs (iDCs) with an altered phenotype, including low levels of CD1a, CD86, CD36 and CD209. DCs generated in the presence of rtv also failed to acquire the typical phenotype of mature DCs (mDCs), and secreted lower amounts of IL-12 and IL-15. Accordingly, these aberrant mDCs failed to support activation of autologous Natural Killer (NK) cells, and resulted highly susceptible to NK cell-mediated cytotoxicity.

Conclusions/Significance

Our findings uncover novel functional properties of PIs within the DC-NK cell cross-talk, unveiling the heterogeneous ability of members of this class drugs to drive the generation of atypical monocyte-derived DCs (MDDCs) showing an aberrant phenotype, a failure to respond appropriately to bacterial endotoxin, a weak ability to prime autologous NK cells, and a high susceptibility to NK cell killing. These unexpected properties might contribute to limit inflammation and viral spreading in HIV-1 infected patients under PIs treatment, and open novel therapeutical perspectives for this class drugs as immunomodulators in autoimmunity and cancer.  相似文献   

19.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

20.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号