首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological evidence indicates that sudden loading of the torso is a risk factor for low back injury. Accurately quantifying the time-varying loading of the spine during sudden loading events and how these loading profiles are affected by workplace factors such as fatigue, expectation, and training can potentially lead to intervention strategies that can reduce these risks. Electromyographic and trunk motion data were collected from six male participants who performed a series of sudden loading trials with varying levels of expectation (no preview, 300-ms audible preview), fatigue (no fatiguing exertion preceding sudden load, short duration/high intensity fatiguing exertion preceding sudden load), and training (untrained, trained). These data were used as inputs to an adaptive system identification model wherein time-varying lower back stiffness, torque, work, and impulse magnitudes were calculated. Results indicated that expectation significantly increased peak and average stiffness by 70% and 113%, respectively, and significantly decreased peak torque, work, and impulse magnitudes by 36%, 50%, and 45%, respectively. Training significantly decreased peak torque and work by 25% and 34%, respectively. The results also showed a significant interaction between expectation and training wherein training had a positive effect during the trials with preview but no effect during the trials with no preview (increased peak stiffness by 17% and decreased impulse magnitude by 43%).  相似文献   

2.
A human trunk model was developed to simulate the effect of a high vertical loading on trunk flexural stiffness. A force–length relationship is attributed to each muscle of the multi-body model. Trunk stiffness and muscle forces were evaluated experimentally and numerically for various applied loads. Experimental evaluation of trunk stiffness was carried out by measuring changes in reaction force following a sudden horizontal displacement at the T10 level prior to paraspinal reflexes induction. Results showed that the trunk stiffness increases under small applied loads, peaks when the loads were further increased and decreases when higher loads are applied. A sensitivity analysis to muscle force–length relationship is provided to determine the model's limitations. This model pointed out the importance of taking into account the changes in muscle length to evaluate the effect of spinal loads beyond the safe limit that cannot be evaluated experimentally and to predict the trunk instability under vertical load.  相似文献   

3.
The purpose of this study was to investigate the responses of the spine during sudden loading in the presence of back and abdominal muscle fatigue, with a primary focus on the implications for spinal stability. Fifteen females were studied and each received sudden loads to the hands, at both known and unknown times. Participants received these loading trials (a) while rested, (b) with back muscle fatigue, and (c) with a combination of back and abdominal muscle fatigue. Measures were taken on the EMG activity of two trunk extensor and two abdominal muscles, and on the trunk angle and centre of pressure. A 3 × 2 Repeated Measures ANOVA was also performed. There were no preparations made prior to the perturbation even when it could be anticipated. However, the peak responses that followed were greater in the unexpected versus the expected condition. In addition, trunk muscle fatigue led to an increase in the baseline activity of the trunk muscles but no additional increase in activity just prior to loading. There was increased activation of both (opposing) muscle groups when only one muscle group was fatigued. Because the peak responses following the perturbation were enhanced in the unknown timing condition, preparations must have taken place prior to the anticipated perturbations, perhaps in other segments of the body that were not measured. Also, the load impact may not have been great enough to elicit large preparations. The heightened baseline activity with fatigue suggests that there may have been increased spinal stiffness whenever the spine was fatigued, and not just immediately prior to an impending perturbation. The increased activation of opposing muscle groups is evidence of increased cocontraction in response to fatigue, possibly to maintain stability with decreasing coordination.  相似文献   

4.
An analttically solvable model that considers the elasticity of the cornea is developed for use in the current and novel corneal refractive surgery procedures. The model assumes that the cornea is a thin spheroid shell with an elastic response to intraocular pressure. The value of the Young's modulus of the post-operative cornea and its dependence on the geometric parameters of the ablation zone are estimated employing "best-fit" approach to nomograms currently used in corneal refractive surgery. These elasticity parameters are applied for quantitative modeling of different types of refractive surgery for myopia.  相似文献   

5.
Bone tissue is remodeled through the catabolic function of the osteoclasts and the anabolic function of the osteoblasts. The process of bone homeostasis and metabolism has been identified to be co-ordinated with several local and systemic factors, of which mechanical stimulation acts as an important regulator. Very recent studies have shown a mutual effect between bone and other organs, which means bone influences the activity of other organs and is also influenced by other organs and systems of the body, especially the nervous system. With the discovery of neuropeptide (calcitonin gene-related peptide, vasoactive intestinal peptide, substance P, and neuropeptide Y) and neurotransmitter in bone and the adrenergic receptor observed in osteoclasts and osteoblasts, the function of peripheral nervous system including sympathetic and sensor nerves in bone resorption and its reaction to on osteoclasts and osteoblasts under mechanical stimulus cannot be ignored. Taken together, bone tissue is not only the mechanical transmitter, but as well the receptor of neural system under mechanical loading. This review aims to summarize the relationship among bone, nervous system, and mechanotransduction.  相似文献   

6.
An EMG-assisted, low-back, lifting model is presented which simulates spinal loading as a function of dynamic, asymmetric, lifting exertions. The purpose of this study has been to develop a model which overcomes the limitations of previous models including static or isokinetic mechanics, inaccurate predictions of muscle coactivity, static interpretation of myoelectric activity, and physiologically unrealistic or variable muscle force per unit area. The present model predicts individual muscle forces from processed EMG data, normalized as a function of trunk angle and asymmetry, and modified to account for muscle length and velocity artifacts. The normalized EMGs are combined with muscle cross-sectional area and intrinsic strength capacity as determined on a per subject basis, to represent tensile force amplitudes. Dynamic internal and external force vectors are employed to predict trunk moments, spinal compression, lateral and anterior shear forces. Data from 20 subjects performing a total of 2160 exertions showed good agreement between predicted and measured values under all trunk angle, asymmetry, velocity, and acceleration conditions. The design represents a significant step toward accurate, fully dynamic modeling of the low-back in multiple dimensions. The benefits of such a model are the insights provided into the effects of motion induced, muscle co-activity on spinal loading in multiple dimensions.  相似文献   

7.
External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury.  相似文献   

8.
The development of innovative experimental approaches is necessary to gain insights in the complex biomechanics of swallowing. In particular, unraveling the mechanisms of formation of the thin film of bolus coating the pharyngeal mucosa after the ingestion of liquid or semi-liquid food products is an important challenge, with implication in dysphagia treatment and sensory perceptions.The aim here is to propose an original experimental model of swallowing (i) to simulate the peristaltic motions driving the bolus from the oral cavity to the esophagus, (ii) to mimic and vary complex physiological variables of the pharyngeal mucosa (lubrication, deformability and velocity) and (iii) to measure the thickness and the composition of the coatings resulting from bolus flow. Three Newtonian glucose solutions were considered as model food boli, through sets of experiments covering different ranges of each physiological parameter mimicked.The properties of the coatings (thickness and dilution in saliva film) were shown to depend significantly on the physical properties of food products considered (viscosity and density), but also on physiological variables such as lubrication by saliva, velocity of the peristaltic wave, and to a lesser extent, the deformability of the pharyngeal mucosa.The biomechanical peristalsis simulator developed here can contribute to unravel the determinants of bolus adhesion on pharyngeal mucosa, necessary both for the design of alternative food products for people affected by swallowing disorders, and for a better understanding of the dynamic mechanisms of aroma perception.  相似文献   

9.
The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level.  相似文献   

10.
11.
The purpose of this study was to clarify the effectiveness of expiration and abdominal bracing maneuvers in response to sudden trunk loading in healthy subjects. Fifteen healthy male subjects were anteriorly loaded under different experimental conditions. Tests were conducted at rest and while performing each of the stabilization maneuvers (expiration and abdominal bracing) at 15% of the maximal voluntary isometric contraction of the internal oblique muscle. Subjects had no knowledge of the perturbation timing. An electromyographic biofeedback system was used to control the intensity of internal oblique muscle activation. Muscular pre-activation of three trunk muscles (internal oblique, external oblique, and L3 erector spinae muscles) and lumbar acceleration in response to loading were measured. The expiration and abdominal bracing maneuvers promoted torso co-contraction, reduced the magnitude of lumbar acceleration, and increased spinal stability compared to the resting condition. There were no differences between the expiration and abdominal bracing maneuvers in the pre-activation of the three trunk muscles or in lumbar acceleration in response to loading. It appears that both expiration and abdominal bracing maneuvers are effective in increasing spinal stability in response to sudden anterior loading.  相似文献   

12.
In order to define relationships between the vibration stress and the strain of the human hand-arm system a biomechanical model was developed. The four masses of the model representing the hand, the forearm and the upper arm were connected by dampers and springs in two perpendicular directions. Simulating muscle activity, damped torsion springs were included additionally. The motions of the model were described by a differential matrix equation which was solved by using a ‘transfer matrix routine’ as well as by numerical integration. Thus, functions with harmonic or transient time courses could be selected as an excitation. The simulated vibrations were compared with those of other hand-arm models. The forces and torques transmitted between the masses, and the energy dissipated by the dampers were computed for several combinations of exciter frequencies and accelerations. The dependence of torques upon excitation agreed fairly well with the behaviour of the arm muscles under vibration as described by various investigators. At frequencies above 100 Hz the energy was dissipated mainly by the dampers between the masses near to the exciter. Transferring this result to the hand-arm system it shows that at high frequencies energy is dissipated by the hand and its palmar tissues and this might be one cause for the incidence of vibration-induced white finger disease.  相似文献   

13.
14.
Due to the frequency of cervical spine injuries in canines, the purpose of this effort was to develop an EMG-driven dynamic model of the canine cervical spine to assess a biomechanical understanding that enables one to investigate the risk of neck disorders. A canine subject was recruited in this investigation in order to collect subject specific data. Reflective markers and a motion capture system were used for kinematic measurement; surface electrodes were used to record electromyography signals, and with the aid of force plate kinetics were recorded. A 3D model of the canine subject was reconstructed from an MRI dataset. Muscles lines of action were defined through a new technique with the aid of 3D white light scanner. The model performed well with a 0.73 weighted R2 value in all three planes. The weighted average absolute error of the predicted moment was less than 10% of the external moment. The proposed model is a canine specific forward-dynamics model that precisely tracks the canine subject head and neck motion, calculates the muscle force generated from the twelve major moment producing muscles, and estimates resulting loads on specific spinal tissues.  相似文献   

15.
We describe some recent enhancements introduced in C-ImmSim, a simulator of the immune system response that we have been developing for a number of years along with preliminary results produced by the simulation of the Highly Active Anti-Retroviral Therapy in HIV-1 infected patients.  相似文献   

16.
17.
18.
A biomechanical model of the lumbosacral joint during lifting activities   总被引:5,自引:0,他引:5  
A biomechanical model of the lumbosacral region was constructed for the purpose of systematically studying the combined stresses and strains on the local ligaments, muscles and disc tissue during sagittal plane two-handed lifting. The model was validated in two ways. The first validation was a comparison of experimental study results with model predictions. In general predictions compared very reasonably with observed values of several authors with the exception of strain predictions on the articular ligaments. Second, a sensitivity analysis was performed over a wide range of lifting tasks. The predicted stress/strain values followed anticipated patterns and were of reasonable magnitudes. On the basis of the results of the sensitivity analysis it was concluded that typical lifting tasks can lead to excessive disc compressive forces, muscle moment generation requirements, and possibly lumbodorsal fascia strains. Conversely, annulus rupture of a healthy disc due to overstrain appears very unlikely.  相似文献   

19.
The extensor mechanism of the finger is a structure transmitting the forces from several muscles to the finger joints. Force transmission in the extensor mechanism is usually modeled by equations with constant coefficients which are determined experimentally only for finger extension posture. However, the coefficient values change with finger flexion because of the extensor mechanism deformation. This induces inaccurate results for any other finger postures. We proposed a biomechanical model of the extensor mechanism represented as elastic strings. The model includes the main tendons and ligaments. The parametric identification of the model in extension posture was performed to match the distribution of the forces among the tendons to experimental data. The parametrized model was used to simulate three degrees of flexion. Furthermore, the ability of the model to reproduce how the force distribution in simulated extensor mechanism changes according to the muscle forces was also demonstrated. The proposed model could be used to simulate the extensor mechanism for any physiological finger posture for which the coefficients involved in the equations are unknown.  相似文献   

20.
In the early stage of human evolution, as the hominids began to inhabit the savanna mosaic in Africa some three or four million years ago, a functional complex of skin features contributed to their effective exploitation of resources and survival in the new environment. Thermal radiation from the sun combined with internally generated heat from muscular effort posed problems of thermoregulation. As a mechanism for dissipating body heat and maintaining brain temperature, eccrine sweat glands throughout the body surface combined with reduction in body hair enhanced the evaporative cooling effects of sweating. As body hair diminished, deeply pigmented skin was selected for as a protection against harmful ultraviolet radiation. When human populations left the equatorial regions of Africa, the adaptive significance of deeply pigmented skin may have shifted in response to other factors, such as latitude, diet and cultural pratices. We view the structure and function of human skin within a comparative and evolutionary framework that focuses on the environment in which the hominids evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号