首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abalone sperm adenylate cyclase activity is particulate in nature and displays a high Mg2+-supported activity (Mg2+/Mn2+ = 0.8) as compared to other sperm adenylate cyclases. Approximately 90% of the enzyme activity in crude homogenates is inhibited by EGTA in a concentration-dependent manner which is overcome by added micromolar free Ca2+. The EGTA-inhibited Ca2+-stimulated enzyme activity is also inhibited by phenothiazines. Added calmodulin, however, has no effect on enzyme activity prepared from crude homogenates. Preparation of a twice EGTA-extracted 48,000 X g pellet fraction yields a particulate enzyme activity that can be stimulated 10-65% by added calmodulin in the presence of micromolar free Ca2+. Detergent extraction (1% Lubrol PX) of the EGTA-washed 48,000 X g pellet solubilizes 2-5% of the total particulate adenylate cyclase activity, and this solubilized enzyme is activated up to 125% by calmodulin. The ability of the different enzyme preparations to be stimulated by calmodulin is inversely proportional to the endogenous calmodulin concentration. Calmodulin stimulation of the Lubrol PX-solubilized enzyme is specific to this Ca2+-binding protein and is mediated as an effect on the velocity of the enzyme. This stimulation is completely Ca2+ dependent and is fully reversible. These data suggest that the control of sperm cAMP synthesis by changes in Ca2+ conductance may be mediated via this Ca2+-binding protein.  相似文献   

2.
Adenylate cyclase in permeabilized cells of Saccharomyces cerevisiae was examined. Among various permeabilization procedures, including organic solvents, detergents and other reagents, dimethylsulfoxide (DMSO) and digitonin treatments resulted in the highest recovery of adenylate cyclase activity. Incubation of cells at 30 degrees C with digitonin at 0.01% to 0.1%, or DMSO at 20% to 40% for 15 to 30 min gave optimal adenylate cyclase activity. The enzyme activity in digitonin-permeabilized cells could be supported only by Mn2+, whereas Mg2+ with or without guanine nucleotides did not support cyclase activity. DMSO-permeabilized cells exhibit efficient Mn2+- and Mg2+/Gpp[NH]p-dependent stimulation. Furthermore, digitonin added to yeast membranes at a 1:50 detergent to protein ratio (w/w) abolishes guanyl nucleotide regulation without significantly affecting the Mn2+-supported cyclase activity. The superiority of DMSO is further supported by the fact that recovery of adenylate cyclase activity is better in the DMSO-treated cells than in the digitonin-treated cells. DMSO most probably causes less disturbance of the fabric of the native cell. We conclude that digitonin, but not DMSO, uncouples the catalytic unit of adenylate cyclase from the regulatory GTP binding (ras) proteins.  相似文献   

3.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

4.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

5.
Calmodulin-mediated adenylate cyclase from mammalian sperm   总被引:6,自引:0,他引:6  
Calmodulin (CaM), the calcium binding protein that modulates the activity of a number of key regulatory enzymes, is present at high levels in sperm. To determine whether CaM regulates adenylate cyclase in mammalian sperm, the actions of EGTA and selected CaM antagonists on a solubilized adenylate cyclase from mature equine sperm were examined. The activity of equine sperm adenylate cyclase was inhibited by EGTA in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 2 mM. Equine sperm adenylate cyclase was also inhibited in a concentration-dependent manner by the CaM antagonists chlorpromazine and calmidazolium (IC50 = 400 and 50 microM, respectively). The inhibition of enzyme activity by these agents correlated with their known potency and specificity as anti-CaM agents. The activity of the enzyme in the presence of 200 microM calmidazolium was restored by the addition of authentic CaM (EC50 = 15 microM); full activity was restored by the addition of 50 microM CaM. La3+, an ion that dissociates CaM from tightly bound CaM-enzyme systems, inhibited equine sperm adenylate cyclase (IC50 = 1 mM). Incubation of equine sperm adenylate cyclase with La3+ dissociated endogenous CaM from the enzyme so that most of the enzyme bound to a CaM-Sepharose column equilibrated with Ca2+. Specific elution of CaM-binding proteins from the CaM-Sepharose column with EGTA yielded a CaM-depleted adenylate cyclase fraction that was stimulated 2-fold by the addition of exogenous CaM.  相似文献   

6.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   

7.
Microtubule-associated adenylate cyclase   总被引:1,自引:0,他引:1  
Twice-cycled bovine brain or rat brain microtubule protein contains an adenylate cyclase activity that passes 0.2 micron filters, is activated 2-7-fold by 30 microM forskolin, shows modest stimulation by fluoride (especially in the presence of added AI3+), but is virtually insensitive to added guanine nucleotides. The activity is insensitive to various hormones or Ca2+/calmodulin. The adenylate cyclase is active with both Mg2+ and Mn2+ but activity is less in the presence of Mg2+ than with Mn2+. The cyclase is inhibited by agonists of the adenosine P site. It is proposed that the catalytic unit of adenylate cyclase and probably small quantities of the guanine nucleotide regulatory protein, Ns, are cycled along with microtubules.  相似文献   

8.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

9.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

10.
Cytochemical techniques have been employed to study the localization of adenylate cyclase and (Ca2+ + Mg2+)-stimulated ATPase activities in platelets after fixation. Biochemical analysis of adenylate cyclase demonstrated a 70% reduction in activity in homogenates from fixed cells, but the residual activity could be stimulated 10--20 times by prostaglandin E1 (1 micrometer) under the same incubation conditions as employed in the cytochemical studies (e.g. media containing 2 mM lead nitrate and 10 mM NaF). Adenylate cyclase activity employing 5'-adenylyl-imiodiphosphate (AMP-P(NH)P) as substrate was found to be associated with the dense tubular system (smooth endoplasmic reticulum) in intact fixed platelets, and was apparent only when the cells were incubated with prostaglandin E1. Less activity was found along the membranes of the surface connected open canalicular system and occasionally at the outer cell surface. Enzymatic activity was blocked by the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl) adenine and was not due to AMP-P(NH)P phosphohydrolase activity. The low adenylate cyclase activity in the surface membranes may be due to enzyme inactivation as a result of fixation, since a surface membrane fraction obtained by the glycerol lysis technique from unfixed cells had an adenylate cyclase specific activity equivalent to that in the microsomal membrane fraction. (Ca2+ + Mg2+)-stimulated ATPase activity was found associated with the membranes of the surface connected open canalicular system in unfixed cells. After brief fixation (5--15 min) with glutaradehyde, strong (Ca2+ + Mg2+)ATPase activity became apparent in the dense tubular system. Longer periods of fixation inactivated enzymatic activity. Addition of Ca2+ (1.0 mM) to incubation medium with low Mg2+ (0.2 mM), or increasing Mg2+ to 4.0 mM, in both cases strongly stimulated enzyme activity. The ATPase activity in the platelet membranes was not inhibited by ouabain. It is suggested that the Ca2+-stimulated ATPase and adenylate cyclase activities in the dense tubules may possibly be involved in regulation of intracellular Ca2+ transport.  相似文献   

11.
The role of calcium-calmodulin (Ca2+-CaM) in the modulation of beta-adrenergic adenylate cyclase activity in rat cerebral cortex has been studied. In addition, the effects of manganese (Mn2+) and forskolin on CaM-dependent enzyme activity were investigated. At 2 mM magnesium (Mg2+) low concentrations of Ca2+ stimulated the enzyme activity (Ka 0.25 +/- 0.08 microM), whereas higher Ca2+ levels (greater than 2 microM) inhibited the activity. No activating effect of Ca2+ was observed in CaM-depleted membranes, but the inhibitory effect persisted and the stimulatory action of Ca2+ could be restored by addition of exogenous CaM. The ability of Ca2+ to activate the enzyme was reduced by increasing concentrations of Mg2+. At 10 mM Mg2+ the apparent Ka of Ca2+ was 0.55 +/- 0.16 microM and half-maximal inhibition was observed at 80-120 microM Ca2+. A synergistic effect was observed between Ca2+ and isoprenaline on the adenylate cyclase activity. Calcium did not alter the apparent Ka of isoprenaline (0.9 +/- 0.27 microM) and isoprenaline did not change the apparent Ka of Ca2+. However, isoprenaline decreased the apparent Ka of CaM; 0.11 +/- 0.07 micrograms vs. 0.32 +/- 0.1 micrograms (0.5 ml assay mixture)-1, with and without isoprenaline, respectively. A synergistic effect was also observed between Ca2+ and forskolin, but no change in their apparent Ka values was found. Furthermore, Mn2+ was found to activate the enzyme through CaM. These data demonstrate that Ca2+ -CaM potentiates beta-adrenergic adenylate cyclase activity and thus is able to modulate neurotransmitter stimulation in cortex. Furthermore, both forskolin and Mn2+ affect CaM-dependent enzyme activity. Forskolin potentiates Ca2+-CaM stimulation, while Mn2+ increases the activity by activating the enzyme through CaM.  相似文献   

12.
For a variety of ligand states, adenylate cyclase activity in the presence of Mn2+ was greater than with Mg2+. Trypsin treatment of intact hepatocytes, under conditions which destroy cell surface glucagon receptors, led to a first order loss of glucagon-stimulated adenylate cyclase activity in isolated membranes assayed in the presence of Mn2+ whether or not GTP (100 microM) was present in the assays. Arrhenius plots of basal activity exhibited a break at around 22 degrees C, those with NaF were linear and those with glucagon +/- GTP (100 microM) were biphasic with a break at around 28 degrees C. It is suggested that Mn2+ perturbs the coupling interaction between the glucagon receptor and catalytic unit of adenylate cyclase at the level of the guanine nucleotide regulatory protein. This appears to take the form of Mn2+ preventing GTP from initiating glucagon's activation of adenylate cyclase through a collision coupling mechanism.  相似文献   

13.
In two fractions obtained from the bovine A. coronaria adenylate cyclase activity was identified and characterized. The adenylate cyclase activity of the 75,000 X g sediment shows a pH optimum at 7.4. The temperature dependence of this adenylate cyclase activity is linear when represented in the Arrhenius plot, and an Arrhenius activation energy of 13.2 kcal Mol-1 can be calculated for the enzyme reaction. The Km-value of the enzyme to ATP is 6 +/- 0.6 - 10(-4) M. The adenylate cyclase activity of the 75,000 X g sediment can be stimulated by NaF. 5'AMP and adenosine inhibit the adenylate cyclase activity of the 75,000 X g sediment. With regard to the enzyme activity, Mn++ and Co++ replace Mg++, but not Ca++. The monovalentcations Na+ and K+ do not influence the adenylate cyclase activity. In a particulate fraction containing plasma membranes, adenylate cyclase activity was also identified. This adenylate cyclase activity can be stimulated by catecholamines, noradrenaline, and isoproterenol. This stimulation can, however, only be proved for the enzyme in the coronaries of 9-week-old and 2-year-old animals. The adenylate cyclase activity from the coronaries of adult animals is not affected by catecholamines. These findings are discussed with regard to hypertension frequently found in adult animals.  相似文献   

14.
The molecular size of adenylate cyclase solubilized from frog erythrocyte membranes by digitonin extraction has been determined by chromatography on Sepharose 6B. Regardless of whether the membranes are exposed to catecholamines, GPP(NH)P, NaF or no effector prior to solubilization, the apparent molecular size of the adenylate cyclase enzyme is the same. Furthermore, a similar elution profile for the enzyme is observed when the catalytic activity in the eluates is measured in the presence of Mn++, rather than Mg++. Since it is generally assumed that the persistent activation of adenylate cyclase by GPP(NH)P requires interaction of the catalytic moiety with the guanine nucleotide regulatory site, it appears that the adenylate cyclase activity detected in the column eluates represents an intact catalytic-regulatory site complex. The adenylate cyclase activity derived from catecholamine pretreated frog erythrocyte membranes does not co-elute with catecholamine-occupied beta-adrenergic receptors, indicating that the agonist-promoted increase in apparent receptor size observed here and in earlier studies does not represent a physical coupling of the receptor and the adenylate cyclase enzyme.  相似文献   

15.
S J Sulakhe  N L Leung  V Sulakhe 《Enzyme》1977,22(2):141-144
Some properties of guanylate cyclase, which was solubilized from the rabbit heart washed particles by the treatment with Triton X-100, were investigated. The solubilized enzyme activity was stimulated by Mg2+ in the presence of low (subsaturating) Mn2+ (GTP is greater than Mn2+); under these conditions, Ga2+ was inhibitory. At subsaturating MnGTP and free Mn2+, the solubilized enzyme was markedly stimulated by MnGDP and MnATP; CaGTP on the other hand, was inhibitory. These results are consistent with the view that the particulate guanylate cyclase may exist in the cell as a metalloenzyme with tightly bound Mn2+ and that Mg2+ supports its catalysis while Ca2+ as well as nucleotides may exert regulatory effects on its activity.  相似文献   

16.
Glucocorticoids are known to increase the cyclic AMP response to parathyroid hormone (PTH) in cultured bone organs or bone cells. Using the osteoblast-like cell line ROS 17/2.8, which possesses receptors for both PTH and glucocorticoids, we investigated which component of the complex hormone receptor-guanine nucleotide regulatory unit--adenylate cyclase was affected by dexamethasone treatment. In response to PTH, isoproterenol or forskolin, a compound that is supposed to act directly on the catalytic unit, cyclic AMP production by intact cells and adenylate cyclase activity in purified plasma membrane were markedly increased by dexamethasone. Whereas NaF, guanosine 5'-[beta gamma-imido]triphosphate and Mn/ stimulated adenylate cyclase activity were similarly enhanced in membranes isolated from glucocorticoid-treated cells, the activity of the stimulatory guanine nucleotide regulatory unit, as assessed by reconstitution into membranes from the CYC- clone, which is genetically devoid of this component, was not altered. Thus in osteoblast-like cells dexamethasone appears to increase cyclic AMP synthesis by influencing the catalytic unit. Moreover, since it has been reported that glucocorticoids may produce changes in cell calcium metabolism, we evaluated cytoplasmic free Ca2+ concentration ([Ca2+]i) and intracellular Ca2+ stores mobilizable by the bivalent-cationophore ionomycin, by using the intracellular fluorescent indicator Quin-2. The results indicated that dexamethasone treatment did not influence [Ca2+]i but markedly decreased ionomycin-releasable Ca2+ stores.  相似文献   

17.
Calcium-dependent adenylate cyclase of pituitary tumor cells   总被引:7,自引:0,他引:7  
Effects of Ca2+ and calmodulin on the adenylate cyclase activity of a prolactin and growth hormone-producing pituitary tumor cell strain (GH3) were examined. The adenylate cyclase activity of homogenates was stimulated approx. 60% by submicromolar free Ca2+ concentrations and inhibited by higher (microM range) concentrations of the cation. A 2-3-fold stimulation of the activity in response to Ca2+ was observed at physiologic concentrations of KCl, with both the stimulatory and inhibitory responses occurring at respectively higher free Ca2+ concentrations. Calmodulin in incubations at low KCl concentrations increased the enzyme activity at all Ca2+ concentrations tested. In incubations conducted at physiologic KCl concentrations, both the inhibitory and stimulatory responses to Ca2+ were shifted by calmodulin to lower respective concentrations of the cation, without significant change occurring in the maximal rate of enzymic activity at optimal free Ca2+ X Mg2+ concentrations in the incubation also influenced the Ca2+ concentration dependence of adenylate cyclase; at high Mg2+ more Ca2+ was required to obtain maximal activity. Trifluoperazine inhibited adenylate cyclase of GH3 cells only in the presence of Ca2+; as Ca2+ concentrations in the assay were increased, higher drug concentrations were required to inhibit the enzyme. Ca2+ was also observed to reduce the extent of enzyme destabilization which occurred during pretreatments at warm temperatures. Vasoactive intestinal polypeptide and phorbol myristate acetate, which stimulate prolactin secretion in intact GH3 cells, enhanced enzyme activity 4- and 2.5-fold, respectively, without added Ca2+. Increasing free Ca2+ concentrations reduced the enhancement by VIP and eliminated the stimulation by PMA.  相似文献   

18.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

19.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

20.
The abalone sperm adenylate cyclase does not appear to be regulated by guanine nucleotides, but has a Mg2+-supported catalytic activity similar to other hormone- and guanine nucleotide-regulated enzymes (Kopf, G. S., and Vacquier, V. D. (1984) J. Biol. Chem. 259, 7590-7596; Kopf, G. S., and Vacquier, V. D. (1985) Biol. Reprod. 33, 1094-1104). The present studies were undertaken to ascertain whether the abalone enzyme has associated guanine nucleotide-binding regulatory proteins. Membrane fractions were incubated with either islet-activating protein (IAP) or cholera toxin and analyzed by sodium dodecyl sulfate SDS-polyacrylamide gel electrophoresis for the presence of toxin-catalyzed ADP-ribosylated proteins. The supernatant from a Lubrol PX-extracted 48,000 X g pellet fraction contained a Mr = 41,000 IAP substrate. This substrate could not be ADP-ribosylated prior to detergent extraction. Lubrol PX-solubilized fractions of membrane preparations from mouse, bovine, and human sperm also contained a Mr = 41,000 IAP substrate. These proteins co-migrated on sodium dodecyl sulfate-polyacrylamide gels with the Mr = 41,000 alpha i-subunit of the inhibitory guanine nucleotide-binding regulatory protein (Gi) from transformed chicken embryo fibroblast and mouse S-49 lymphoma membrane extracts. The sperm IAP substrates displayed similar protease digest patterns to alpha i of mouse S-49 lymphoma cells. Sea urchin sperm analyzed in a similar manner contained a Mr = 39,000 IAP substrate. Cholera toxin-catalyzed ADP-ribosylation of specific sperm membrane proteins was not observed in any of the sperm preparations tested. The presence of the beta-subunit common to both the stimulatory and inhibitory guanine nucleotide-binding regulatory heterotrimers was confirmed in sperm using an antiserum directed against the purified beta-subunit of the guanine nucleotide-binding regulatory proteins from bovine brain. It is concluded that all of the sperm tested, with the possible exception of sea urchin sperm, contain a Gi-like protein. Additional properties of these proteins and their role(s) in sperm function are currently being examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号