首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The cellulolytic fungus Aspergillus terreus showed an additional property of fermenting glucose to ethanol. In addition to glucose, A. terreus also fermented other hexoses, pentoses and disaccharides to ethanol. Of the soluble carbon sources tested, glucose yielded maximum (2.46% (w/v)) ethanol.  相似文献   

2.
The cellulolytic fungus Aspergillus terreus showed an additional property of fermenting glucose to ethanol. In addition to glucose, A. terreus also fermented other hexoses, pentoses and disaccharides to ethanol. Of the soluble carbon sources tested, glucose yielded maximum (2.46% (w/v)) ethanol.  相似文献   

3.
4.
Summary A mutant strain of Candida sp. XF 217, was found to produce ethanol from D-xylose aerobically as well as anaerobically. The rate of ethanol production under aerobic conditions was greater, indicating an oxygen requirement for the uptake of D-xylose in XF 217. Ethanol was also produced by XF 217 when D-glucose, D-fructose, sucrose or maltose were used as substrates. The D-xylose fermenting yeast strain is a potential organism to use for ethanol production from renewable biomass-derived hexoses and pentoses.  相似文献   

5.
Characteristics of the cellulolytic system of the anaerobic fungus Piromyces sp. strain E2 with respect to adsorption onto microcrystalline cellulose were examined. Cellulolytic enzymes were separated by gel filtration chromatography into a high-molecular-mass complex with an apparent mass of approximately 1,200 to 1,400 kDa and proteins of lower molecular weights. Adsorption of cellulolytic enzymes was not only very fast (within 2 min, equilibrium was attained) but also very effective: Avicelase, endoglucanase, and beta-glucosidase activities from the high-molecular-mass complex were almost completely removed by Avicel. Adsorption of these enzyme activities was proportional and appeared to obey the Langmuir isotherm. For Avicelase, endoglucanase, and beta-glucosidase activities, the maximum amounts adsorbed (Amax) and apparent adsorption constants (Kad) were 16.8, 600, and 33.5 IU/g and 284, 6.93 and 126 ml/IU, respectively. The results of this study strongly support the existence of a multiprotein enzyme complex. This complex was found not to be specifically associated with cell wall fragments as judged by chitin determination.  相似文献   

6.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on alpha-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus beta-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of alpha-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of beta-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying beta-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

7.
8.
This study reports the production of xylanolytic and cellulolytic enzymes by a thermophilic fungal isolate Myceliophthora sp. using a cheap medium containing rice straw and chemically defined basal medium under solid-state culture. A combination of one factor at a time approach followed by response surface methodology using Box-Behnken design of experiments resulted in 2.5, 1.25, 1.28 and 4.23 fold increase in xylanase, endoglucanase, beta-glucosidase and FPase activity, respectively. The zymograms developed against IEF gels showed that multiple isoforms of xylanase (5), endoglucanase (4) and beta-glucosidase (2) were produced under optimized culture conditions. Moreover, thiol containing serine proteases produced during the growth of the culture had no role in the post-translational modification of these xylanases.  相似文献   

9.
10.
11.
Summary Production of ethanol from cellodextrins, as large as cellohexose, byCandida lusitaniae andC. wickerhamii was studied.C. lusitaniae fermented only glucose and cellobiose, whereasC. wickerhamii efficiently fermented cellodextrins. Maximum ethanol yields of 29.2 g/liter from 54 g/liter cellodextrins were achieved byC. wickerhamii in 3–4 days.  相似文献   

12.
Chaetomium cellulolyticum, a newly isolated cellulolytic fungus, showed 50–100% faster growth rates and over 80% more final biomass-protein formation than Trichoderma viride, a well-known high cellulase-producing cellulolytic organism, when cultivated on Solka-floc (a purified, predominantly amorphorous form of cellulose) or partially delignified sawdust (consisting of a mixture of hardwoods) as the sole-carbon source in the fermentation media. However, in both cases, T. viride produced much higher quantities of free cellulases at faster rates and also degraded more substrate than C. cellulolyticum. It is concluded that the synthesis mechanisms and/or the nature of the cellulase complexes of the two types of organisms are quite different such that C. cellulolyticum is more optimal for single-cell protein (SCP) production, while T. viride is more optimal for the production of extracellular cellulases. It was also found that the amino acid composition of C. cellulolyticum is generally better than that of T. viride and compares favorably with those of the FAO reference protein, alfalfa, and soya meal. In addition, preliminary feeding trials on rats have shown no adverse effects of the SCP produced by C. cellulolyticum fermentations.  相似文献   

13.
A saccharification of cellulosic material using culture filtrate from the stationary phase of a culture of Thermomonospora sp. produced primarily cellobiose up to levels inhibitory to further saccharification, while the use of whole broth resulted in the production of glucose as well. Glucose production was enhanced and continued throughout the saccharification (24–36 hr) by several additions of cellobiase activity in the form of culture solids. Using Solka-Floc as substrate, the “difference sugar” level (total soluble sugar minus glucose) rapidly rose to the same relatively stable concentration under various hydrolysis conditions, which was independent of the total sugar and glucose concentrations. A rapid hydrolusis rate was observed initially during saccharification, followed by a much slower rate of sugar production. Repeated centrifugation of the reaction mixture and replacement of the supernatant with fresh enzyme solution resulted each time in the reinitiation of a rapid hydrolysis rate. Saccharifications using A vicel microcrystalline cellulose, acid-swollen cellulose, and cotton as substrates were also studied. A modified method of making phosphoric-acid swollen cellulose is described. Saccharification of this substrate by culture filtrate and sequential additions of culture solids resulted in an inverse relationship between the attained glucose concentration and cellobiose-cellotriose concentrations.  相似文献   

14.
Co-cultures of N. frontalis with a formate-utilizing methanogen, Methanobacterium formicicum and/or an aceticlastic methanogen, Methanosaeta concilii, were performed for methane production from cellulose. In the co-culture with M. formicicum, ca. 16 mM CH4 was produced after 7 days without accumulation of H2 and formate. In the co-culture with M. concilii, 12 mM CH4 was produced after 17 days with decreasing acetate production. In the tri-culture of N. frontalis with M. formicicum and M. concilii, 24 mM CH4 was produced after 17 days where acetate still remained at 23 mM, but production of lactate and ethanol decreased. When a 4-times concentrated culture broth of M. concilii was inoculated in this tri-culture system in a bioreactor, 150 mM CH4 was produced after 24 days by feeding of cellulose, although 57 mM acetate still accumulated.  相似文献   

15.
Direct fermentation of unhydrolyzed potato starch to ethanol by monocultures of an amylolytic fungus, Aspergillus niger, and cocultures of A. niger and Saccharomyces cerevisiae was investigated. Amylolytic activity, rate and amount of starch utilization, and ethanol yields increased several-fold in coculture versus the monoculture due to the synergistic metabolic interactions between the species. Optimal ethanol yields were obtained in the pH range 5 to 6 and amylolytic activity was obtained in the pH range 5 to 8. Ethanol yields were maximal when fermentations were conducted anaerobically. Increasing S. cerevisiae inoculum in the coculture from 4 to 12% gave a dramatic increase in the rate of ethanol production, and ethanol yields of greater than 96% of the theoretical maximum were obtained within 2 days of fermentation. These results indicate that simultaneous fermentation of starch to ethanol can be conducted efficiently by using cocultures of the amylolytic fungus A. niger and a nonamylolytic sugar fermenter, S. cerevisiae.  相似文献   

16.
Laccase-negative filamentous fungus INBI 2-26(-) isolated from non-sporulating laccase-forming fungal association INBI 2-26 by means of protoplast technique was identified as Chaetomium sp. based on partial sequence of its rRNA genes. In the presence of natural cellulose sources, the strain secreted neutral cellobiose dehydrogenase (CDH) activity both in pure culture and in co-culture with laccase-positive filamentous fungus INBI 2-26(+) isolated from the same association. INBI 2-26(-) also secreted CDH during submerged cultivation in minimal medium with glucose as the sole carbon source. Maximal CDH activity of 1IU/ml at pH 6 with 2,6-dichlorophenolindophenol (DCPIP) as an acceptor was obtained on 12th day of submerged cultivation with filter paper as major cellulose source. Cellulase system of Chaetomium sp. INBI 2-26(-) capable of adsorption onto H(3)PO(4)-swollen filter paper consisted of four major proteins (Mr 200, 95, 65 and 55K) based on SDS-polyacrylamide gel electrophoresis and was capable of DCPIP reduction without exogenous cellobiose.  相似文献   

17.
Summary Growth and ethanol production by three strains (MSN77, thermotolerant, SBE15, osmotolerant and wild type ZM4) of the bacterium Zymomonas mobilis were tested in a rich medium containing the hexose fraction from a cellulose hydrolysate (Aspen wood). The variations of yield and kinetic parameters with fermentation time revealed an inhibition of growth by the ethanol produced. This inhibition may result from the increase in medium osmolality due to ethanol formation from glucose.Nomenclature S glucose concentration (g/L) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - Qp volumetric ethanol productivity (g/L.h) - QX volumetric biomass productivity (g/L.h) - YX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

18.
Microbial transformation of adrenosterone (1) by suspended-cell cultures of the filamentous fungus Cunninghamella elegans resulted in the production of five metabolites 2-6, which were identified as 9alpha-hydroxyadrenosterone (2), 11-ketotestosterone (3), 6beta-hydroxyadrenosterone (4), 9alpha-hydroxy-11-ketotestosterone (5), and 6beta-hydroxy-11-ketotestosterone (6). Structures of new metabolites 2, 5, and 6 were established by single-crystal X-ray diffraction analysis.  相似文献   

19.
Rapid fermentation of bagasse hydrolysate to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae has been studied in batch and continuous cultures at pH 4.0 and 30°C temperature with cell recycle. By using a 23.6 g/liter cell concentration, a concentation of 9.7% (w/v)ethanol was developed in a period of 6 hr. The rate of fermentation was found to increase with supplementation of yeast vitamins in the hydrolysate. In continuous culture employing cell recycle and a 0.127 v/v/m air flow rate, a cell mass concentration of 48.5 g/liter has been achieved. The maximum fermentor productivity of ethanol obtained under these conditions was 32.0 g/liter/hr, which is nearly 7.5 times higher than the normal continuous process without cell recycle and air sparging. The ethanol productivity was found to decrease linearly with ethanol concentration. Conversion of glucose in the hydrolysate to ethanol was achieved with a yield of 95 to 97% of theoretical.  相似文献   

20.
Significant quantitative differences in ethanol yields along with repression in acetic acid production were observed in Clostridium thermocellum strains SS21 and SS22 in the presence of H 2 , acetone and sodium azide. Exogenous H 2 addition (1.0 atm) increased the ethanol yields to 0.40 g/g and ethanol to acetate ratio to 5.75 in strain SS21 but was inhibitory in strain SS22. Addition of acetone reversed the inhibition caused by H 2 and increased the ethanol yields and ethanol to acetate ratio of strain SS22 up to 0.40 g/g and 7.9, respectively. Enhancement in ethanol yields up to 0.40 g/g and 0.41 g/g and ethanol to acetate ratio up to 3.63 and 8.1 were observed in the presence of 0.2 mM and 0.15 mM concentration of sodium azide by strains SS21 and SS22, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号