首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Human parainfluenza virus type 1 (HPIV1) is a significant cause of respiratory tract disease in infants and young children for which a vaccine is needed. In the present study, we sought to attenuate HPIV1 by the importation of one or more known attenuating point mutations from heterologous paramyxoviruses into homologous sites in HPIV1. The introduced mutations were derived from three attenuated paramyxoviruses: (i) HPIV3cp45, a live-attenuated HPIV3 vaccine candidate containing multiple attenuating mutations; (ii) the respiratory syncytial virus cpts530 with an attenuating mutation in the L polymerase protein; and (iii) a murine PIV1 (MPIV1) attenuated by a mutation in the accessory C protein. Recombinant HPIV1 (rHPIV1) mutants bearing a single imported mutation in C, any of three different mutations in L, or a pair of mutations in F exhibited a 100-fold or greater reduction in replication in the upper or lower respiratory tract of hamsters. Both temperature-sensitive (ts) (mutations in the L and F proteins) and non-ts (the mutation in the C protein) attenuating mutations were identified. rHPIV1 mutants containing a combination of mutations in L were generated that were more attenuated than viruses bearing the individual mutations, showing that the systematic accretion of mutations can yield progressive increases in attenuation. Hamsters immunized with rHPIV1 mutants bearing one or two mutations developed neutralizing antibodies and were resistant to challenge with wild-type HPIV1. Thus, importation of attenuating mutations from heterologous viruses is an effective means for rapidly identifying mutations that attenuate HPIV1 and for generating live-attenuated HPIV1 vaccine candidates.  相似文献   

4.
Recombinant human parainfluenza virus type 1 (rHPIV1) was modified to create rHPIV1-P(C-), a virus in which expression of the C proteins (C', C, Y1, and Y2) was silenced without affecting the amino acid sequence of the P protein. Infectious rHPIV1-P(C-) was readily recovered from cDNA, indicating that the four C proteins were not essential for virus replication. Early during infection in vitro, rHPIV1-P(C-) replicated as efficiently as wild-type (wt) HPIV1, but its titer subsequently decreased coincident with the onset of an extensive cytopathic effect not observed with wt rHPIV1. rHPIV1-P(C-) infection, but not wt rHPIV1 infection, induced caspase 3 activation and nuclear fragmentation in LLC-MK2 cells, identifying the HPIV1 C proteins as inhibitors of apoptosis. In contrast to wt rHPIV1, rHPIV1-P(C-) and rHPIV1-C(F170S), a mutant encoding an F170S substitution in C, induced interferon (IFN) and did not inhibit IFN signaling in vitro. However, only rHPIV1-P(C-) induced apoptosis. Thus, the anti-IFN and antiapoptosis activities of HPIV1 were separable: both activities are disabled in rHPIV1-P(C-), whereas only the anti-IFN activity is disabled in rHPIV1-C(F170S). In African green monkeys (AGMs), rHPIV1-P(C-) was considerably more attenuated than rHPIV1-C(F170S), suggesting that disabling the anti-IFN and antiapoptotic activities of HPIV1 had additive effects on attenuation in vivo. Although rHPIV1-P(C-) protected against challenge with wt HPIV1, its highly restricted replication in AGMs and in primary human airway epithelial cell cultures suggests that it might be overattenuated for use as a vaccine. Thus, the C proteins of HPIV1 are nonessential but have anti-IFN and antiapoptosis activities required for virulence in primates.  相似文献   

5.
6.
Although live-attenuated influenza vaccines (LAIV) are safe for use in protection against seasonal influenza strains, concerns regarding their potential to reassort with wild-type virus strains have been voiced. LAIVs have been demonstrated to induce enhanced mucosal and cell-mediated immunity better than inactivated vaccines while also requiring a smaller dose to achieve a protective immune response. To address the need for a reassortment-incompetent live influenza A virus vaccine, we have designed a chimeric virus that takes advantage of the fact that influenza A and B viruses do not reassort. Our novel vaccine prototype uses an attenuated influenza B virus that has been manipulated to express the ectodomain of the influenza A hemagglutinin protein, the major target for eliciting neutralizing antibodies. The hemagglutinin RNA segment is modified such that it contains influenza B packaging signals, and therefore it cannot be incorporated into a wild-type influenza A virus. We have applied our strategy to different influenza A virus subtypes and generated chimeric B/PR8 HA (H1), HK68 (H3), and VN (H5) viruses. All recombinant viruses were attenuated both in vitro and in vivo, and immunization with these recombinant viruses protected mice against lethal influenza A virus infection. Overall, our data indicate that the chimeric live-attenuated influenza B viruses expressing the modified influenza A hemagglutinin are effective LAIVs.  相似文献   

7.
Human parainfluenza virus type 1 (HPIV1) is a significant cause of pediatric respiratory disease in the upper and lower airways. An in vitro model of human ciliated airway epithelium (HAE), a useful tool for studying respiratory virus-host interactions, was used in this study to show that HPIV1 selectively infects ciliated cells within the HAE and that progeny virus is released from the apical surface with little apparent gross cytopathology. In HAE, type I interferon (IFN) is induced following infection with an HPIV1 mutant expressing defective C proteins with an F170S amino acid substitution, rHPIV1-CF170S, but not following infection with wild-type HPIV1. IFN induction coincided with a 100- to 1,000-fold reduction in virus titer, supporting the hypothesis that the HPIV1 C proteins are critical for the inhibition of the innate immune response. Two recently characterized live attenuated HPIV1 vaccine candidates expressing mutant C proteins were also evaluated in HAE. The vaccine candidates, rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710-11, which contain temperature-sensitive (ts) attenuating (att) and non-ts att mutations, were highly restricted in growth in HAE at permissive (32°C) and restrictive (37°C) temperatures. The viruses grew slightly better at 37°C than at 32°C, and rHPIV1-CR84G/Δ170HNT553ALY942A was less attenuated than rHPIV1-CR84G/Δ170HNT553ALΔ1710-11. The level of replication in HAE correlated with that previously observed for African green monkeys, suggesting that the HAE model has potential as a tool for the preclinical evaluation of HPIV1 vaccines, although how these in vitro data will correlate with vaccine virus replication in seronegative human subjects remains to be seen.  相似文献   

8.
Paramyxoviruses such as human parainfluenza viruses that bear inserts encoding protective antigens of heterologous viruses can induce an effective immunity against the heterologous viruses in experimental animals. However, vectors based on common human pathogens would be expected to be restricted in replication in the adult human population due to high seroprevalence, an effect that would reduce vector immunogenicity. To address this issue, we evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is serotypically distinct from common human pathogens, as a vaccine vector. Two strains were evaluated: the attenuated vaccine strain LaSota (NDV-LS) that replicates mostly in the chicken respiratory tract and the Beaudette C (NDV-BC) strain of intermediate virulence that produces mild systemic infection in chickens. A recombinant version of each virus was modified by the insertion, between the P and M genes, of a gene cassette encoding the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN) protein, a test antigen with considerable historic data. The recombinant viruses were administered to African green monkeys (NDV-BC and NDV-LS) and rhesus monkeys (NDV-BC only) by combined intranasal and intratracheal routes at a dose of 10(6.5) PFU per site, with a second equivalent dose administered 28 days later. Little or no virus shedding was detected in nose-throat swabs or tracheal lavages following immunization with either strain. In a separate experiment, direct examination of lung tissue confirmed a highly attenuated, restricted pattern of replication by parental NDV-BC. The serum antibody response to the foreign HN protein induced by the first immunization with either NDV vector was somewhat less than that observed following a wild-type HPIV3 infection; however, the titer following the second dose exceeded that observed with HPIV3 infection, even though HPIV3 replicates much more efficiently than NDV in these animals. NDV appears to be a promising vector for the development of vaccines for humans; one application would be in controlling localized outbreaks of emerging pathogens.  相似文献   

9.
The Kansas strain of bovine parainfluenza virus type 3 (BPIV3) is 100- to 1,000-fold restricted in replication in the respiratory tracts of nonhuman primates compared to human PIV3 (HPIV3), an important pathogen of infants and young children. BPIV3 is also restricted in replication in human infants and children, yet it is immunogenic and is currently being evaluated in clinical trials as a vaccine candidate to protect against illness caused by HPIV3. We have examined the genetic basis for the host range attenuation phenotype of BPIV3 by exchanging each open reading frame (ORF) of a recombinant wild-type HPIV3 with the analogous ORF from BPIV3, with the caveats that the multiple ORFs of the P gene were exchanged as a single unit and that the HN and F genes were exchanged as a single unit. Recombinant chimeric bovine-human PIV3s were recovered from cDNA, and the levels of viral replication in vitro and in the respiratory tract of rhesus monkeys were determined. Recombinant chimeric HPIV3s bearing the BPIV3 N or P ORF were highly attenuated in the upper and lower respiratory tracts of monkeys, whereas those bearing the BPIV3 M or L ORF or the F and HN genes were only moderately attenuated. This indicates that the genetic determinants of the host range restriction of replication of BPIV3 for primates are polygenic, with the major determinants being the N and P ORFs. Monkeys immunized with these bovine-human chimeric viruses, including the more highly attenuated ones, developed higher levels of HPIV3 hemagglutination-inhibiting serum antibodies than did monkeys immunized with BPIV3 and were protected from challenge with wild-type HPIV3. Furthermore, host range determinants could be combined with attenuating point mutations to achieve an increased level of attenuation. Thus, chimeric recombinant bovine-human PIV3 viruses that manifest different levels of attenuation in rhesus monkeys are available for evaluation as vaccine candidates to protect infants from the severe lower respiratory tract disease caused by HPIV3.  相似文献   

10.
Measles virus nucleocapsid protein protects rats from encephalitis.   总被引:7,自引:6,他引:1  
Lewis rats immunized with recombinant vaccinia virus expressing the nucleocapsid (N) protein of measles virus were protected from encephalitis when subsequently challenged by intracerebral infection with neurotropic measles virus. Immunized rats revealed polyvalent antibodies to the N protein of measles virus in the absence of any neutralizing antibodies as well as an N protein-specific proliferative lymphocyte response. Depletion of CD8+ T lymphocytes did not abrogate the protective potential of the N protein-specific cell-mediated immune response in rats, while protection could be adoptively transferred with N protein-specific CD4+ T lymphocytes. These results indicate that a CD4+ cell-mediated immune response specific for the N protein of measles virus is sufficient to control measles virus infections of the central nervous system.  相似文献   

11.
Safe and effective vaccination is important for rabies prevention in animals. Although several genetically engineered rabies vaccines have been developed, few have been licensed for use, principally due to biosafety concerns or due to poor efficacy in animal models. In this paper, we describe the construction and characterization of a replication-competent recombinant canine adenovirus type-2 expressing the rabies virus glycoprotein (SRV9 strain) by a different strategy from that reported previously, i.e., the recombinant genome carrying the glycoprotein cDNA was generated by a series of strictly gene cloning steps, infectious recombinant virus was obtained by transfecting the recombinant genome into a canine kidney cell line, MDCK. This recombinant virus, CAV-E3delta-CGS, was subcutaneously injected into dogs. All vaccinated dogs produced effective neutralizing antibodies after one inoculation and a stronger anamnestic immune response was produced after booster injection. The immunized dogs could survive the challenge of 60,000 mouse LD50 CVS-24, which is lethal to all unimmunized dogs and is comparable to the conventional vaccines. The immunity lasts for months with a protective level of neutralizing antibody. This recombinant virus would be an alternative to the attenuated and the inactivated rabies vaccines and be prospective in immunizing dogs against rabies.  相似文献   

12.
Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral particles, elicited humoral responses in MV-susceptible genetically modified mice. However, small differences in HBsAg expression elicited vastly different HBsAg antibody levels. The two vectors inducing the highest HBsAg antibody levels were inoculated into rhesus monkeys (Macaca mulatta). After challenge with a pathogenic MV strain (Davis87), control naive monkeys showed a classic measles rash and high viral loads. In contrast, all monkeys immunized with vaccine or a control nonvectored recombinant vaccine or HBsAg-expressing vectored MV remained healthy, with low or undetectable viral loads. After a single vaccine dose, only the vector expressing HBsAg at the highest levels elicited protective levels of HBsAg antibodies in two of four animals. These observations reveal an expression threshold for efficient induction of HBsAg humoral immune responses. This threshold is lower in mice than in macaques. Implications for the development of divalent vaccines based on live attenuated viruses are discussed.  相似文献   

13.
Wang F  Yang W  Fang F  Chang H  Yu P  Chen Z 《DNA and cell biology》2008,27(7):377-385
Hemagglutinin (HA) is the main surface glycoprotein of influenza B virus. The B/Ibaraki/2/85 virus HA gene is 1758 bp in length, including signal peptide sequence, HA1 sequence, and HA2 sequence. We previously proved that B/Ibaraki/2/85 HA DNA induced immune response and provided effective protection in mice against challenge with homologous virus. In this study, a series of recombinant plasmids encoding truncated HA gene were constructed by PCR. BALB/c mice were immunized with the plasmids and challenged with a lethal dose of homologous virus. The essential sequence of HA DNA against influenza virus was explored by evaluation of survival rate, lung virus titer, bodyweight change, and serum anti-HA antibody titer of mice. The result showed that serial deletion did not deprive HA DNA of its protective ability until 885 nucleotides (295 amino acids) at 3'-terminal or 9 nucleotides of the signal peptide sequence at 5'-terminal were deleted. When the signal peptide sequence was kept intact and the 5'-terminal deletion started at the beginning of the HA1 sequence, deletion of 51 nucleotides (17 amino acids) made HA DNA lose its protective ability. This suggests that the sequence nt94-876 of B/Ibaraki/2/85 virus HA DNA played an important role in protection against infection.  相似文献   

14.
La Crosse virus, a member of the California serogroup of bunyaviruses, is an important cause of pediatric encephalitis in the midwestern United States. Like all bunyaviruses, La Crosse virus contains two glycoproteins, G1 and G2, the larger of which, G1, is the target of neutralizing antibodies. To develop an understanding of the role of each of the glycoproteins in the generation of a protective immune response, we immunized 1-week-old mice with three different preparations: a vaccinia virus recombinant (VV.ORF) that expresses both G1 and G2, a vaccinia virus recombinant (VV.G1) that expresses G1 only, and a truncated soluble G1 (sG1) protein prepared in a baculovirus system. Whereas VV.ORF generated a protective response that was mostly directed against G1, VV.G1 was only partially effective at inducing a neutralizing response and at protecting mice from a potentially lethal challenge with La Crosse virus. Nevertheless, a single immunization with the sG1 preparation resulted in a robust immune response and protection against La Crosse virus. These results indicate that (i) the G1 protein by itself can induce an immune response sufficient for protection from a lethal challenge with La Crosse virus, (ii) a neutralizing humoral response correlates with protection, and (iii) the context in which G1 is presented affects its immunogenicity. The key step in the defense against central nervous system infection appeared to be interruption of a transient viremia that occurred just after La Crosse virus inoculation.  相似文献   

15.
Respiratory syncytial virus (RSV) causes severe respiratory disease in infants and a vaccine is highly desirable. The fusion (F) protein of RSV is an important vaccine target, but the contribution of F-specific T cells to successful vaccination remains unclear. We studied the immune response to vaccination of mice with a recombinant Sendai virus expressing RSV F (rSeV F). rSeV F induced protective neutralizing antibody and RSV F-specific CTL responses. T cell immunity was stronger than that induced by recombinant vaccinia virus (rVV F), a well characterized reference vector. Vaccination of antibody-deficient mice showed that vaccine-induced RSV F-specific T cells were sufficient for protective immunity. rSeV F induced T cell immunity in the presence of neutralizing antibodies, which did not impair the vaccine response. Although the F protein only contains a subdominant CTL epitope, vaccination with rSeV F is sufficient to induce protective T cell immunity against RSV in mice.  相似文献   

16.
The shipping fever (SF) and Kansas (Ka) strains of bovine parainfluenza virus type 3 (BPIV3) are restricted in their replication in rhesus monkeys 100- to 1,000-fold compared to human parainfluenza virus type 3 (HPIV3), and the Ka strain also was shown to be attenuated in humans. To initiate an investigation of the genetic basis of the attenuation of BPIV3 in primates, we produced viable chimeric HPIV3 recombinants containing the nucleoprotein (N) open reading frame (ORF) from either BPIV3 Ka or SF in place of the HPIV3 N ORF. These chimeric recombinants were designated cKa-N and cSF-N, respectively. Remarkably, cKa-N and cSF-N grew to titers comparable to those of their HPIV3 and BPIV3 parents in LLC-MK2 monkey kidney and Madin-Darby bovine kidney cells. Thus, the heterologous nature of the N protein did not impede replication in vitro. However, cKa-N and cSF-N were each restricted in replication in rhesus monkeys to a similar extent as Ka and SF, respectively. This identified the BPIV3 N protein as a determinant of the host range restriction of BPIV3 in primates. These chimeras thus combine the antigenic determinants of HPIV3 with the host range restriction and attenuation phenotype of BPIV3. Despite their restricted replication in rhesus monkeys, the chimeric viruses induced a level of resistance to HPIV3 challenge in these animals which was indistinguishable from that conferred by immunization with HPIV3. The infectivity, attenuation, and immunogenicity of these BPIV3/HPIV3 chimeras suggest that the modified Jennerian approach described in the present report represents a novel method to design vaccines to protect against HPIV3-induced disease in humans.  相似文献   

17.
To determine whether intranasal inoculation with a paramyxovirus-vectored vaccine can induce protective immunity against Ebola virus (EV), recombinant human parainfluenza virus type 3 (HPIV3) was modified to express either the EV structural glycoprotein (GP) by itself (HPIV3/EboGP) or together with the EV nucleoprotein (NP) (HPIV3/EboGP-NP). Expression of EV GP by these recombinant viruses resulted in its efficient incorporation into virus particles and increased cytopathic effect in Vero cells. HPIV3/EboGP was 100-fold more efficiently neutralized by antibodies to EV than by antibodies to HPIV3. Guinea pigs infected with a single intranasal inoculation of 10(5.3) PFU of HPIV3/EboGP or HPIV3/EboGP-NP showed no apparent signs of disease yet developed a strong humoral response specific to the EV proteins. When these animals were challenged with an intraperitoneal injection of 10(3) PFU of EV, there were no outward signs of disease, no viremia or detectable EV antigen in the blood, and no evidence of infection in the spleen, liver, and lungs. In contrast, all of the control animals died or developed severe EV disease following challenge. The highly effective immunity achieved with a single vaccine dose suggests that intranasal immunization with live vectored vaccines based on recombinant respiratory viruses may be an advantageous approach to inducing protective responses against severe systemic infections, such as those caused by hemorrhagic fever agents.  相似文献   

18.
Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.  相似文献   

19.
Pregnant sows were inoculated with the attenuated strain, TO--163, of swine transmissible gastroenteritis virus. Suckling piglets born from them received challenge inoculation with the virulent virus at 3 days after birth, and examined for ability to prevent infection and the immunoglobulin (Ig) classes of antibody in milk. A pregnant sow was inoculated intramuscularly with a dose of 10(8.0) TCID50 and intranasally with a dose of 10(9.3) TCID50 of attenuated virus. Piglets born from it suffered from diarrhea after challenge inoculation, but none of them died eventually. Their dam was also affected with diarrhea for 4 to 7 days after challenge inoculation of them. Another pregnant sow was inoculated twice with 10(9.3) TCID50 of attenuated virus, first by the intramuscular and secondly by the intranasal route. Of nine piglets born from it, one excreted soft feces after challenge inoculation, but all survived to grow normally. Their dam manifested no clinical symptoms at all after challenge inoculation of them. The higher the titer of virus inoculated into pregnant sows, the higher the neutralizing antibody titer in serum and milk of the sows after farrowing. The puerperal sow which had received two doses of 10(9.3) TCID50 each of attenuated virus by the intramuscular and intranasal route, respectively, presented the highest neutralizing antibody titer of all the inoculated sows. This titer was 2,048 in serum and 14,183 in colostrum immediately after farrowing. In that sow IgG was the main class of immunoglobulins in neutralizing antibody in milk. Even the IgA antibody titer of that sow was higher than that of any other sow which had been administered with virus of low titer. It was 392 and 19 3 and 9 days, respectively, after farrowing.  相似文献   

20.
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-γ and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号