首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Definition of the kinetics of ligand-activated actin polymerization in the neutrophil is important for ultimately understanding the mechanisms utilized for regulation of actin polymerization in this non-muscle cell. To better define the kinetics of formyl peptide (fMLP)-induced actin polymerization in neutrophils we determined F-actin content at 5 second intervals after activation of human neutrophils with a range (10(-11)-10(-9) M) of fMLP concentrations. The state of actin polymerization was monitored by quantifying F-actin content with NBD phallacidin binding in both flow cytometric and extraction assays. Results demonstrate three successive kinetic periods of fMLP-induced actin polymerization in neutrophils, a lag period, a 5 second period when rate of polymerization is maximal, and a period of declining rate of actin polymerization as F-actin content approaches a maximum. The duration of the lag period, the maximum rate of polymerization, and the maximum extent of polymerization all depend upon the fMLP concentration. The lag period varies from 0 to 12 seconds and is followed in 5-10 seconds by a 5 second burst of actin polymerization when the rate is as great as 9% increase in F-actin content per second. After the 5 second burst of polymerization, the rate of polymerization rapidly declines. The study defines three distinct kinetic periods of fMLP-induced actin polymerization during which important rate-limiting biochemical events occur. The mechanistic and motile implications of kinetic periods are discussed.  相似文献   

2.
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations less than or equal to 10(-8) M (Howard, T.H., and W.H. Meyer, 1984, J. Cell Biol., 98:1265-1271). We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T.H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25 degrees C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 min after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 +/- 0.3-4.4 +/- 0.6% increase in F-actin/s) is the same for 10(-10) - 10(-6) M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 +/- 1.0-30 +/- 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and F-actin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that actin polymerization and depolymerization follow fMLP stimulation in sequence, the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.  相似文献   

3.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

4.
Neutrophil activation by a variety of stimuli is accompanied by an intracellular acidification, which has been postulated to mediate actin polymerization (Yuli and Oplatka, Science 1987, 235, 340). This hypothesis was tested using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin staining and flow cytometry, or right angle light scattering to study actin assembly in intact and electrically permeabilized human neutrophils. Intracellular pH was measured fluorimetrically using a pH sensitive dye. In cells stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) at 21 degrees C, actin assembly clearly preceded the intracellular acidification in response to fMLP. Moreover, actin polymerization persisted in cells where intracellular pH was clamped near the resting (unstimulated) level using nigericin/K+. Finally, fMLP induced a significant increase in F-actin content in electropermeabilized neutrophils equilibrated with an extracellular medium containing up to 50 mM HEPES. These observations indicate that fMLP-stimulated F-actin assembly is not mediated by a decrease in intracellular pH and suggest that changes in transmembrane potential and ionic gradients are unlikely to mediate actin polymerization.  相似文献   

5.
The microfilament lattice, composed primarily of filamentous (F)-actin, determines in large part the mechanical (deformability) properties of neutrophils, and thus may regulate the ability of neutrophils to transit a microvascular bed. Circulating factors may stimulate the neutrophil to become rigid and therefore be retained in the capillaries. We hypothesized that cell stiffening might be attenuated by an increase in intracellular cAMP. A combination of cell filtration and cell poking (mechanical indentation) was used to measure cell deformability. Neutrophils pretreated with dibutyryl cAMP (db-cAMP) or the combination of prostaglandin E2 (PGE2, a stimulator of adenylate cyclase) and isobutylmethylxanthine (IBMX, an inhibitor of phosphodiesterase) demonstrated significant inhibition of the n-formyl-methionyl-leucyl-phenylalanine (fMLP)-inducing stiffening. The inhibition of cell stiffening was associated with an increase in intracellular cAMP as measured by enzyme-linked immunoassay (EIA) and an increase in the activity of the cAMP-dependent kinase (A-kinase). Treatment with PGE2 and IBMX also resulted in a decrease in the F-actin content of stimulated neutrophils as assayed by NBD-phallacidin staining and flow cytometry or by changes in right angle light scattering. Direct addition of cAMP to electropermeabilized neutrophils resulted in attenuation of fMLP-induced actin assembly. Neutrophils stimulated with fMLP demonstrated a rapid redistribution of F-actin from a diffuse cortical location to a peripheral ring as assessed by conventional and scanning confocal fluorescence microscopy. Pretreatment of neutrophils with the combination of IBMX and PGE2 resulted in incomplete development and fragmentation of the cortical ring. We conclude that assembly and redistribution of F-actin may be responsible for cell stiffening after exposure to stimulants and that this response was attenuated by agents that increase intracellular cAMP, by altering the amount and spatial organization of the microfilament component of the cytoskeleton.  相似文献   

6.
Stimulation of human neutrophils with the chemotactic N-formyl peptide causes production of oxygen radicals and conversion of monomeric actin (G-actin) to polymeric actin (F-actin). The effects of the binary botulinum C2 toxin on the amount of F-actin and on neutrophil cell responses were studied. Two different methods for analyzing the actin response were used in formyl peptide-stimulated cells: staining of F-actin with rhodamine-phalloidin and a transient right angle light scatter. Preincubation of neutrophils with 400 ng/ml component I and 1,600 ng/ml component II of botulinum C2 toxin for 30 min almost completely inhibited the formyl peptide-stimulated polymerization of G-actin and at the same time decreased the amount of F-actin in unstimulated neutrophils by an average of approximately 30%. Botulinum C2 toxin preincubation for 60 min destroyed approximately 75% of the F-actin in unstimulated neutrophils. Right angle light scatter analysis showed that control neutrophils exhibited the transient response characteristic of actin polymerization; however, after botulinum C2 toxin treatment, degranulation was detected. Single components of the binary botulinum C2 toxin were without effect on the actin polymerization response. Fluorescence flow cytometry and fluorospectrometric binding studies showed little alteration in N-formyl peptide binding or dissociation dynamics in the toxin-treated cells. However, endocytosis of the fluorescent N-formyl peptide ligand-receptor complex was slower but still possible in degranulating neutrophils treated with botulinum C2 toxin for 60 min. The half-time of endocytosis, estimated from initial rates, was 4 and 8 min in control and botulinum C2 toxin-treated neutrophils, respectively.  相似文献   

7.
We have addressed the important question as to if and how the cytosolic free Ca2+ concentration, [Ca2+]i, is involved in fMet-Leu-Phe induced actin polymerization in human neutrophils. Stimulation of human neutrophils with the chemotactic peptide (10(-7) M), known to result in a prompt rise of the [Ca2+]i to above 500 nM, also induced a rapid decrease of monomeric actin, G-actin, content (to 35% of basal) and increase of filamentous actin, F-actin, content (to 320% of basal). A reduction of the fMet-Leu-Phe induced [Ca2+]i transient to about 250 nM, resulted in a less pronounced decrease of G-actin content (to 80% of basal) and increase of F-actin content (to 235% of basal). A total abolishment of the chemotactic peptide induced [Ca2+]i rise, still led to a decrease of the G-actin content (to 85% of basal) and increase of F-actin (to 200% of basal). These results indicate that the [Ca2+]i rise is not an absolute requirement, but has a modulating role for the fMet-Leu-Phe induced actin polymerization. Another possible intracellular candidate for fMet-Leu-Phe induced actin polymerization is protein kinase C. However, direct activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) only resulted in a minor increase of F-actin content. The recent hypothesis that a metabolite of the polyphosphoinositide cycle, independently of [Ca2+]i and protein kinase C, is responsible for actin polymerization agrees well with these results and by the fact that preexposure to pertussis toxin totally abolished a subsequent increase of F-actin content induced by fMet-Leu-Phe.  相似文献   

8.
The objective of this study was to test the hypothesis that cytoskeletal actin fragmentation is mediated through caspase-2, specifically examining the ability of a caspase-2 inhibitor to interfere with actin fragmentation, in comparison with a caspase-3 inhibitor. Cardiomyocytes were cultured from embryonic chick heart. The fine structural element of cellular F-actin was visualized by staining cardiomyocytes with NBD-phallacidin. Lovastatin induced a dramatic and concentration-dependent loss of intact F-actin. The selectivity of this effect of lovastatin was demonstrated by the absence of similar changes in F-actin when cardiomyocytes were treated with the apoptotic stimulus palmitate, the metabolism of which produces acetyl CoA, the early substrate of cholesterol synthesis, through the mevalonate pathway. FACS analysis of NBD-phallacidin-stained cells was used to quantify the amount of F-actin loss. Actin fragmentation produced by lovastatin was operative through a caspase-2 pathway, as the caspase-2 inhibitor, z-VDVAD-fmk, significantly blocked lovastatin-induced changes in F-actin, but the caspase-3 inhibitor, Ac-DEVD-CHO, did not. Interruption of the mevalonate pathway was in part responsible for lovastatin's action, as the downstream metabolite mevalonate partially reversed the effect of lovastatin on actin fragmentation. These data indicate a previously unrecognized link between cytoskeletal actin and caspase-2.  相似文献   

9.
We studied the effect of cytochalasins (B, D, and E) on the F-actin content in human neutrophils and lymphocytes using NBD-phallacidin labeling followed by flow cytometry. All three cytochalasins induced a concentration- and time-dependent increase in the F-actin content in both cell types. The order of potency was cytochalasin D greater than E greater than B. The increase in F-actin content was accompanied by a decrease in the G-actin content as measured by DNase I inhibition assay. These observations suggest that in intact cells cytochalasins may function differently compared to purified and semipurified systems, and their effects may be modified through other actin-binding or sequestering proteins. 2-deoxyglucose (20 mM) caused a decrease in the basal F-actin content and significantly reduced the change induced by the cytochalasins. These results suggest that the state of actin in intact cells is regulated by cytosolic ATP levels, primarily by the integrity of the glycolytic pathway. Based on these observations, we conclude that the mechanism of action of cytochalasins in intact cells is more complex than current models suggest.  相似文献   

10.
Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.  相似文献   

11.
The fraction of polymerized actin in human blood neutrophils increases after exposure to formyl-methionyl-leucyl-phenylalanine (fmlp), is maximal 10 s after peptide addition, and decreases after 300 s. Most of the gelsolin (85 +/- 11%) in resting ficoll-hypaque (FH)-purified neutrophils is in an EGTA resistant, 1:1 gelsolin-actin complex, and, within 5 s after 10(-7) M fmlp activation, the amount of gelsolin complexed with actin decreases to 42 +/- 12%. Reversal of gelsolin binding to actin occurs concurrently with an increase in F-actin content, and the appearance of barbed-end nucleating activity. The rate of dissociation of EGTA resistant, 1:1 gelsolin-actin complexes is more rapid in cells exposed to 10(-7) M fmlp than in cells exposed to 10(-9) M fmlp, and the extent of dissociation 10 s after activation depends upon the fmlp concentration. Furthermore, 300 s after fmlp activation when F-actin content is decreasing, gelsolin reassociates with actin as evidenced by an increase in the amount of EGTA resistant, 1:1 gelsolin-actin complex. Since fmlp induces barbed end actin polymerization in neutrophils and since in vitro the gelsolin-actin complex caps the barbed ends of actin filaments and blocks their growth, the data suggests that in FH neutrophils fmlp-induced actin polymerization could be initiated by the reversal of gelsolin binding to actin and the uncapping of actin filaments or nuclei. The data shows that formation and dissociation of gelsolin-actin complexes, together with the effects of other actin regulatory proteins, are important steps in the regulation of actin polymerization in neutrophils. Finally, finding increased amounts of gelsolin-actin complex in basal FH cells and dissociation of the complex in fmlp-activated cells suggests a mechanism by which fmlp can cause actin polymerization without an acute increase in cytosolic Ca++.  相似文献   

12.
Violaceol-I and -II were isolated from a fractionated library of marine-derived fungal metabolites. These compounds increased the calcium ion concentration inside the cell and caused F-actin aggregation in rat fibroblast 3Y1 cells within 3 h resulting in cell shape elongation. Calcium chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) inhibited violaceol-I and -II induced F-actin aggregation in 3Y1 cells, and hence violaceol-I and -II act in a calcium dependent manner. Violaceol-I and -II inhibited G-actin polymerization in vitro in a dose-dependent manner and strongly associated with G-actin, at dissociation equilibrium constants of 1.44 × 10(-8) M and 2.52 × 10(-9) M respectively. Here we report the identification of a novel function of violaceol-I and -II as actin inhibitors. Violaceol-I and -II induced cell shape elongation through F-actin aggregation in 3Y1 fibroblasts. These compounds may give researchers new insights into the role of actin in tumorigenesis and lead to the development of additional anti-tumor drugs.  相似文献   

13.
Experiments were performed to determine whether remodeling of the actin cytoskeleton contributes to arteriolar constriction. Mouse tail arterioles were mounted on cannulae in a myograph and superfused with buffer solution. The alpha1-adrenergic agonist phenylephrine (0.1-1 micromol/l) caused constriction that was unaffected by cytochalasin D (300 nmol/l) or latrunculin A (100 nmol/l), inhibitors of actin polymerization. In contrast, each compound abolished the mechanosensitive constriction (myogenic response) evoked by elevation in transmural pressure (PTM; 10-60 or 90 mmHg). Arterioles were fixed, permeabilized, and stained with Alexa-568 phalloidin and Alexa-488 DNAse I to visualize F-actin and G-actin, respectively, using a Zeiss 510 laser scanning microscope. Elevation in PTM, but not phenylephrine (1 micromol/l), significantly increased the intensity of F-actin and significantly decreased the intensity of G-actin staining in arteriolar vascular smooth muscle cells (VSMCs). The increase in F-actin staining caused by an elevation in PTM was inhibited by cytochalasin D. In VSMCs at 10 mmHg, prominent F-actin staining was restricted to the cell periphery, whereas after elevation in PTM, transcytoplasmic F-actin fibers were localized through the cell interior, running parallel to the long axis of the cells. Phenylephrine (1 micromol/l) did not alter the architecture of the actin cytoskeleton. In contrast to VSMCs, the actin cytoskeleton of endothelial or adventitial cells was not altered by an elevation in PTM. Therefore, the actin cytoskeleton of VSMCs undergoes dramatic alteration after elevation in PTM of arterioles and plays a selective and essential role in mechanosensitive myogenic constriction.  相似文献   

14.
C-reactive protein (CRP) inhibits neutrophil movement through a p38 MAP kinase pathway. We hypothesized that CRP altered F-actin content and distribution on human neutrophils as a means of inhibiting movement. CRP produced simultaneous increased F-actin and decreased G-actin levels. CRP increased F-actin levels in a concentration-dependent manner once a threshold (>100 microg/ml) was reached, and transiently increased F-actin (peak levels at 2.5 and 10 min) that returned to baseline by 30 min. Confocal microscopy of neutrophils revealed that fMLP provoked acquisition of a migratory phenotype as evidenced by the appearance of F-actin rich lamellipods. In contrast, CRP caused neutrophil rounding, prevented lamellipod formation and shifted F-actin from the cytoskeleton to the cortex. The p38 MAP kinase inhibitor, SB203580, produced a similar effect on neutrophil shape. Concentrations of SB203580 that dramatically decreased p38 activity in neutrophils also caused round cell morphology and cortical F-actin distribution. Since CRP inhibits p38 MAP kinase and p38 blockade leads to actin polymerization and prevention of lamellipod formation, it is concluded that round morphology and loss of lamellipod formation result from CRP inhibition of p38 MAP kinase. Understanding the signal transduction of CRP prevention of lamellipod formation will aid in the development of therapeutic agents against neutrophil-associated inflammatory disease.  相似文献   

15.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

16.
To better understand the changes that occur in cytoplasmic actin during cell movement, we studied the effect of inhibitors of cell movement on the molecular conformation of actin and its incorporation into the Triton-insoluble cytoskeleton of human neutrophils. The sulfhydryl reactive compound N-ethylmaleimide caused an increase in cellular F-actin as measured by uptake of the F-actin specific fluorescent probe 7-nitrobenz-2-oxadiazole-phallacidin. However, N-ethylmaleimide reduced the amount of actin associated with the Triton-insoluble cytoskeleton. Dithiobisnitrobenzoic acid, a sulfhydryl reagent that does not cross cell membranes efficiently, did not alter the F-actin content of neutrophils. The effect of N-ethylmaleimide was blocked by the presence of dithiothreitol, a donor of sulfhydryl groups. N-ethylmaleimide did not affect the polymerization of actin in a cell-free system. Cytochalasin B did not alter F-actin content of neutrophils but did decrease actin in cytoskeletons of resting neutrophils. Cytochalasin inhibited the increase in F-actin initiated by the chemoattractant N-formylmethionylleucylphenylalanine. We propose that N-ethylmaleimide blocks the stabilization of G-actin in cytoplasm, interferes with the incorporation of F-actin polymer into the cytoskeleton, and depolymerizes the cytoskeleton. In contrast cytochalasin stabilizes G-actin in the presence of chemotactic peptide. These data suggest that reversible conversion of G-actin to F-actin and incorporation of F-actin into the Triton-insoluble cytoskeleton are important for neutrophil movement.  相似文献   

17.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

18.
Radhika V  Naik NR  Advani SH  Bhisey AN 《Cytometry》2000,42(6):379-386
Chronic myeloid leukemia (CML), a hematopoietic stem cell disorder, is characterized by the presence of Philadelphia chromosome (Ph1). Earlier studies have shown that various functions, such as chemotaxis, fluid phase pinocytosis, phagocytosis, and degranulation in response to chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP), were defective in polymorphonuclear leukocytes (PMNL) from CML patients. These functions depend on actin microfilaments (MF). Further studies showed that fMLP-induced actin polymerization was lower in CML PMNL. To see if this defect is specific to stimulation by fMLP alone or is a global phenomenon involving other chemoattractant receptors, chemotaxis and actin polymerization were studied in response to fMLP, an analog of fMLP, formyl-methionine-1 aminocyclooctane 1 carboxylic acid-phenyalanine-O-methionine (FACC8), platelet-activating factor (PAF), and leukotriene B4 (LTB4). These compounds bind to different chemoattractant receptors. Chemotaxis and actin polymerization in response to all four chemoattractants were significantly lower in CML PMNL compared with PMNL from normal subjects and were differentially affected for the different chemoattractants. These results suggest a global phenomenon involving all four chemoattractant-stimulated pathways. This lower amount of F-actin may be responsible for the defective chemotaxis seen in these cells.  相似文献   

19.
The fast and transient polymerization of actin in nonmuscle cells after stimulation with chemoattractants requires strong nucleation activities but also components that inhibit this process in resting cells. In this paper, we describe the purification and characterization of a new actin-binding protein from Dictyostelium discoideum that exhibited strong F-actin capping activity but did not nucleate actin assembly independently of the Ca2+ concentration. These properties led at physiological salt conditions to an inhibition of actin polymerization at a molar ratio of capping protein to actin below 1:1,000. The protein is a monomer, with a molecular mass of approximately 100 kDa, and is present in growing and in developing amoebae. Based on its F-actin capping function and its apparent molecular weight, we designated this monomeric protein cap100. As shown by dilution-induced depolymerization and by elongation assays, cap100 capped the barbed ends of actin filaments and did not sever F-actin. In agreement with its capping activity, cap100 increased the critical concentration for actin polymerization. In excitation or emission scans of pyrene-labeled G-actin, the fluorescence was increased in the presence of cap100. This suggests a G-actin binding activity for cap100. The capping activity could be completely inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and bound cap100 could be removed by PIP2. The inhibition by phosphatidylinositol and the Ca(2+)-independent down-regulation of spontaneous actin polymerization indicate that cap100 plays a role in balancing the G- and F-actin pools of a resting cell. In the cytoplasm, the equilibrium would be shifted towards G-actin, but, below the membrane where F-actin is required, this activity would be inhibited by PIP2.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1597-1605
Beta 2 integrins are involved in the adhesion of leukocytes to other cells and surfaces. Although adhesion is required for cell locomotion, little is known regarding the way beta 2 integrin-receptors affect the actin network in leukocytes. In the present study filamentous actin (F- actin) levels in non-adherent human neutrophils have been measured by phalloidin staining after antibody cross-linking of beta 2 integrins. Antibody engagement of beta 2 integrins resulted in a rapid and sustained (146 and 131% after 30 and 300 s, respectively) increase in the neutrophil F-actin content. This is in contrast to stimulation with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP), which causes a prompt and pronounced but rapidly declining rise in F-actin (214 and 127% after 15 and 300 s, respectively). Priming neutrophils with 1 nM PMA, a low concentration that did not influence the F-actin content per se, increased the magnitude of the beta 2 integrin-induced response but had no effect on the kinetics (199% after 30 s and 169% after 300 s). Removal of extracellular Ca2+ only marginally affected the beta 2 integrin-induced F-actin response for cells that were pretreated with PMA whereas the response for nonprimed cells was reduced by half. This suggests that even though extracellular Ca2+ has a modulatory effect it is not an absolute requirement for beta 2 integrin-induced actin polymerization. beta 2 integrin engagement did not affect the resting cellular level of cAMP arguing against a role of cAMP in beta 2 integrin-induced actin assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号