首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Oxidative stress and covalent binding have been proposed as possible mechanisms involved in the cytotoxic effects of the parkinsonism-causing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the toxicity induced by MPTP in isolated rat hepatocytes seems to be relatively independent of oxygen radical-induced oxidative stress. Here we demonstrate that MPTP cytotoxicity is not potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase, nor prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) or the iron-chelating agent desferrioxamine. Moreover, preincubation of hepatocytes with diethylmaleate to lower the level of intracellular reduced glutathione (to 20% of the initial value) did not affect either the rate or extent of MPTP cytotoxicity. Thus, nucleophilic soluble thiols do not seem to play a protective role against MPTP-induced cell damage, in contrast to what one would have expected if covalent protein binding and oxidative stress were involved as toxic mechanisms. On the other hand, MPTP cytotoxicity was potentiated by pretreatment of hepatocytes with cytochrome P-450 inhibitors (e.g., SKF 525A and metyrapone) and a more rapid depletion of ATP was observed in these experimental conditions. We conclude that mitochondrial damage and subsequent ATP depletion are likely to play a critical role in the toxicity of MPTP to isolated hepatocytes and that the metabolism of MPTP via the cytochrome P-450 monooxygenase system can be considered to be a detoxifying pathway.  相似文献   

2.
The loss of viability of isolated rat hepatocytes exposed to either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) was prevented by addition of fructose to the incubation medium. This protection was dependent on fructose concentration, being complete at 10 mM. Addition of fructose dramatically delayed MPTP- and MPP+-induced depletion of ATP and was accompanied by a significant accumulation of lactate, indicating the occurrence of enhanced glycolytic production of ATP. Glucose was much less effective against MPTP and MPP+ toxicity, probably because it is a relatively poor substrate for glycolysis in liver cells. We conclude that depletion of ATP is a critical event in MPTP cytotoxicity in our in vitro model system, and that the use of alternative sources of ATP production may represent an important protective device against the effects of this toxic agent.  相似文献   

3.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin, which can damage dopaminergic neurons. It causes symptoms resembling those observed in patients suffering from Parkinson's disease, and hence this toxin is widely used in studies on animal models of this disorder. Mutagenicity of MPTP was also reported by some authors, but results obtained by others suggested that this compound is not mutagenic. Interestingly, those contrasting results were based on the same assay (the Ames test). Therefore, we aimed to test MPTP mutagenicity by employing a recently developed Vibrio harveyi assay, which was demonstrated previously to be more sensitive than the Ames test, at least for some mutagens. We found that MPTP showed a significant mutagenic activity. Moreover, MPTP mutagenicity was attenuated by methylxanthines, compounds that are known to form complexes with aromatic mutagens.  相似文献   

4.
The role of fatty acid metabolism in chemical-dependent cell injury is poorly understood. Addition of L-carnitine to the incubation medium of cultured hepatocytes delayed cell killing initiated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Protection by L-carnitine was stereospecific and observed as late as 1 h following addition of MPTP. D-Carnitine, but not iodoacetate, reversed the L-carnitine effect. Monoamine oxidase A and B activities, MPTP/N-methyl-4-phenyl-pyridinium levels, and MPTP-dependent loss of mitochondrial membrane potential measured by release of [3H]triphenylmethylphosphonium were not altered by addition of L-carnitine. Significant changes in MPTP-induced depletion of total cellular ATP did not occur with excess L-carnitine. Although the mechanism of cytoprotection exerted by L-carnitine remains unresolved, the data suggest that L-carnitine does not significantly alter: (i) mitochondrial-dependent bioactivation of MPTP; (ii) MPTP-dependent loss of mitochondrial membrane potential; or (iii) MPTP-mediated depletion of total cellular ATP content. We conclude that alterations of fatty acid metabolism may contribute to the toxic consequences of exposure to MPTP. Moreover, the lack of L-carnitine-mediated cytoprotection of monolayers incubated with 4-phenylpyridine or potassium cyanide suggests: (i) a link between fatty acid metabolism and mitochondrial membrane-mediated, bioactivation-dependent cell killing; and (ii) that inhibition of NADH dehydrogenase may not totally explain the mechanism of MPTP cytotoxicity.  相似文献   

5.
6.
Yantiri F  Andersen JK 《IUBMB life》1999,48(2):139-141
Parkinson disease (PD) involves the specific degeneration of dopaminergic neurons of the pars compacta of the substantia nigra. Although the cause of the degeneration of nigrostriatal dopaminergic neurons in PD is unknown, there is significant evidence to suggest that oxidative stress may be involved in this process. This review specifically examines the current status of evidence suggesting iron may contribute to oxidative damage associated with PD.  相似文献   

7.
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight increase in lipid peroxidation above control levels in hepatocytes, while both MPTP and MPDP+ showed antioxidant effects. The latter two compounds also protected against chemically and nonchemically induced lipid peroxidation in rat liver microsomes. MPDP+ was effective at much lower concentrations than MPTP. MPDP+ was also markedly more efficient when NADPH was used to induce microsomal lipid peroxidation. Lipid peroxidation as a consequence of oxygen radical generation is therefore unlikely to be involved in MPTP toxicity in vitro and the rationale of using chain-breaking antioxidants as protective agents in vivo needs a more careful evaluation.  相似文献   

8.
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes.  相似文献   

9.
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, K m for the substrate (acetylthiocholine), was found to be 0.216 mM and K i for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.  相似文献   

10.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an impurity in certain batches of illicit heroin substitutes, is known to cause parkinsonian symptoms and degeneration of the nigrostriatal cells in drug abusers and primates. Neurotoxicity depends on oxidation of MPTP by monoamine oxidase in brain cells to the dihydropyridinium form, which is further oxidized to N-methyl-4-phenylpyridinium (MPP+), the 4-electron oxidation product. The latter is widely believed to be the compound responsible for neuronal destruction and the NADH dehydrogenase of the inner membrane has been postulated to be its target. This enzyme is inhibited, however, only at very high concentrations of MPP+, while the steady-state concentration of MPP+ in the nigrostriatal cells of MPTP-treated animals is several orders of magnitude lower. This paradox has now been resolved by the discovery of an energized uptake system for MPP+ in mitochondria which rapidly concentrates MPP+ to very high concentrations in the mitochondria at micromolar external concentrations. The process is dependent on the electrical gradient of the membrane, has a Km of about 5 mM, and is completely blocked by respiratory inhibitors and uncouplers.  相似文献   

11.
Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.  相似文献   

12.
After treatment with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), there was a severe loss of dopamine (DA) at all examined sites in the striatum, both in those monkeys which remained asymptomatic (77-99%) and in one monkey which developed severe parkinsonian disability (94-99%). However, the asymptomatic animals had normal DA concentration in the substantia nigra (SN); yet in the symptomatic animal DA was largely depleted in the central (86%) and medial (94%), but not lateral (8%) regions of the SN. The HVA/DA ratio was raised in the striatum of all MPTP-treated animals. In the SN though, this ratio was elevated only in the symptomatic animal, in the central and medial, but not lateral regions. The contralateral half of these brains were examined for DA histofluorescence. The SN of asymptomatic animals had a slight increase in lipofuscin fluorescence within dopaminergic neurons and a small reduction in the number of dopaminergic cells, while fluorescent intensity of individual neurons was unchanged. The SN of the symptomatic animal displayed a sharp decline in the number of DA neurons along with an increase in autofluorescent pigment granules; these changes were most pronounced in the central and medial regions of the SN. These data suggest that after MPTP the terminals of the nigrostriatal pathway are affected before the cell bodies. In the one symptomatic animal emergence of parkinsonian disability corresponded with a marked loss of DA neurons and DA concentration in the central and medial regions of the SN. In the control monkeys a gradient in the concentration of amines and metabolites was observed within the SN; the lateral region contained the highest and the medial region the lowest concentration.  相似文献   

13.
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated.  相似文献   

14.
Systemic administration of high doses of MPTP caused transient bradykinesia, "freezing" episodes, head tremors, hunching of the back and peripheral autonomic effects. Neurological syndrome was clearly dose-dependent. It has been established that Parkinson's syndrome is caused by high-amplitude paroxysmal discharges in the nucleus caudatis. It is concluded that the nucleus caudatis plays the role of a pathological determinant structure in the development of Parkinson's syndrome induced by MPTP.  相似文献   

15.
Experiments in rats revealed that the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) given in multiple daily doses either per os (p.o.) or subcutaneously (s.c.) induced in a dose-dependent manner solitary or double ("kissing") duodenal ulcers in the rat. MPTP also diminished cerebral concentrations of DOPAC and the duodenal ulcers were prevented by pretreatment with dopamine agonists (e.g., bromocriptine, lergotrile) or monoamine oxidase inhibitors (e.g., pargyline, 1-deprenyl). High doses of MPTP also caused gastric erosions and motility changes resembling parkinsonism (e.g., akinesia, rigidity, forward bending of trunk). This chemical decreased gastric secretion of acid and pepsin, as well as pancreatic bicarbonate, trypsin and amylase. Thus, MPTP causes duodenal ulcers that are possibly associated with impaired defense in the duodenal bulb (e.g., decreased availability of duodenal and pancreatic bicarbonate).  相似文献   

16.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces parkinsonism in human and non-human primates. Its mechanism of action is not fully elucidated.Recently, the participation of trace metals, such as manganese, on its neurotoxic action has been postulatted. In this work, we studied the effect of manganese administration on the neurochemical consequences of MPTP neurotoxic action. Male Swiss albino mice were treated with manganese chloride (MnCl2 ·4H2O; 0.5 mg/ml or 1.0 mg/ml of drinking water) for 7 days, followed by three MPTP administrations (30 mg/Kg, intraperitoneally). Seven days after the last MPTP administration, mice were sacrificed and dopamine and homovanillic acid contents in corpus striatum were analyzed. Striatal concentration of dopamine was found increased by 60% in mice pretreated with 0.5 mg/ml and 52% in the group treated of 1.0 mg/ml as compared versus animals treated with MPTP only. Hornovanillic acid content in both groups treated with manganese was the same as those in control animals. The results indicate that manganese may interact with MPTP, producing an enhancement of striatal dopamine turnover, as the protective effect of manganese was more pronounced in the metabolite than in the neurotransmitter.  相似文献   

17.
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed.  相似文献   

18.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produce an irreversible parkinsonian-like syndrome in humans, monkeys and mice C57BL/6. Experimental parkinsonism produced by MPTP on mice C57BL/6 were studied with the aim of working up the method for testing MPTP-like substances. It has been shown that intraperitoneal administration the maximal tolerated doses of MPTP cause significant decrease (by 40-60%) of dopamine content on the mice brain. Number of injections did not influence the results. The similar administration of 4-phenyl-pyridyl and 4,4'-dipyridyl derivates, including known herbicides paraquat and cyperquat, produce neither decrease of dopamine content in the brain, nor the development of parkinsonian-like behavioral syndrome.  相似文献   

19.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+.  相似文献   

20.
Using a mouse liver microsomal preparation, it was found that the heterocyclic ring system of MPTP underwent an initial α-oxidation to give chemically reactive metabolites that may be associated with the induction of Parkinsonism by MPTP. Subsequent oxidative metabolic transformations of these intermediates were found to give a lactam metabolite and a pyridone metabolite that potentially may interact with the neurotransmitter system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号