首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage polykaryons associated with the foreign body granuloma display several electrophysiological properties when studied with intracellular microelectrodes. One of the most evident properties is the slow hyperpolarization (2-5 s long, 10-60 mV amplitude), due to transient openings of Ca2+-dependent K+ channels, that is similar to those observed in macrophages. How this oscillation of membrane potential is triggered is not well known and the only way to repeatedly activate it under experimental control is through the intracellular injection of Ca2+. Although this technique is important for understanding the properties of the K+ channels, no information has been obtained about the way Ca2+ levels are raised and controlled in the cytosol. Slow hyperpolarizations can also be triggered by electrical stimulation, but reproducibility is low with cells bathed in physiological solutions. We then decided to investigate the effect of depolarization on the electrophysiological properties of macrophage polykaryons exposed to bathing solutions of several ionic compositions. We show in this paper that cell membrane depolarization induced by a long current pulse can trigger several patterns of membrane potential changes and that, in the absence of extracellular Na+, repetitive oscillations of decaying amplitudes are observed in almost all the cells. They are very similar to the slow hyperpolarizations, are dependent on the presence of extracellular Ca2+, and are blocked by quinine and D-600. Whole-cell patch clamp recording under voltage clamp conditions showed an outward current that oscillates and that also exhibits decaying amplitudes. The data presented here indicate that these oscillations are a consequence of the cyclic opening of the Ca2+-activated K+ channels and support the hypothesis that favors the participation of Ca2+ channels and of the Ca2+/Na+ exchange system in their triggering. These two mechanisms are not enough to explain either why the K+ channels close or why the membrane potential returns to the original level at the end of each cycle. The possibility of using these oscillations as a model to study the slow hyperpolarization is discussed.  相似文献   

2.
Summary We have previously reported hyperpolarizing membrane potential changes in a monkey kidney cell line (JTC-12) which has characteristics resembling proximal tubular cells. These hyperpolarizations could be observed spontaneously or evoked by mechanically touching adjacent cells. In this report, we have shown further evidence that these hyperpolarizations are elicited by an increase in membrane conductance to K+ which is caused by an increase in cytosolic Ca2+ concentration. In addition, we have found another type of hyperpolarization which is evoked by applying flow of extracellular fluid to the cell. Intracellular injection of Ca2+ and Sr2+ evoked hyperpolarizations, while intracellular injection of Mn2+ and Ba2+ did not. Intracellular injection of EGTA suppressed both spontaneous and mechanically evoked hyperpolarizations. In Ca2+-free medium, both spontaneous and flow-evoked hyperpolarizations were not observed, while mechanical stimuli consistently evoked hyperpolarization. In Na+-free medium, the incidence of cells showing the spontaneous or flow-evoked hyperpolarization increased, and the amplitude and the duration of the mechanically evoked hyperpolarization became greater. Quinidine inhibited all types of hyperpolarization. These data suggest that hyperpolarizations in JTC-12 cells are due to an increase in Ca2+-activated K+ conductance.  相似文献   

3.
Summary The oscillation of membrane potential in fibroblastic L cells is known to result from periodic stimulation of Ca2+-activated K+ channels due to the oscillatory increase in the intracellular Ca2+ concentration. These repeated hyperpolarizations were inhibited by putative calmodulin antagonists, trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and promethazine (PMZ), and the concentrations required for half-maximal inhibition were 25, 30 and 300 m, respectively. These doses were lower than those for reducing the membrane resistance due to nonspecific cell damages. Another calmodulin antagonist, chlorpromazine (CPZ), was also effective, but CPZ-sulfoxide was not. Intracellular pressure injections of calmodulin-interacting divalent cations, Ca2+, Sr2+, Mn2+ and Ni2+, elicited slow hyperpolarizations, whereas Mg2+ and Ba2+, which are known to be essentially inert for calmodulin, failed to evoke any responses. The injection of purified calmodulin also brought about a similar hyperpolarization. Quinine, an inhibitor of Ca2+-activated K+ channels, abolished both Ca2+-and calmodulin-induced hyperpolarizations. TFP prevented Ca2+-induced hyperpolarizations. The TFP effect was partially reversed by the calmodulin injection. It is concluded that calmodulin is involved in the operation of Ca2+-activated K+ channels in fibroblasts.  相似文献   

4.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

5.
In phagocytic cells evidence for properties of Ca2+-sensitive K+-selective channels comes mostly from electrophysiological studies. Macrophages and macrophage-like cells are compared with fibroblasts (L-cells) where the Ca+-dependent K+ conductance is better understood. This model shares a mesenchymal origin and an accessory phagocytic capacity with the professional phagocytes. In macrophages several values of transmembrane potentials have been measured by different groups, using various techniques. Microelectrode measurements have demonstrated a voltage-dependent K+ conductance involved in transition from low to high membrane potentials. Current-voltage relationships in mouse peritoneal exudate cells have revealed a region of negative slope resistance. Slow calcium spikes were found in a subpopulation of cells from human dialysis fluid that appear to be distinct from typical macrophages. Action potentials have been recorded from human monocyte-derived macrophages. Their ionic mechanism has not yet been established. Spontaneous and electrically elicited slow membrane hyperpolarizations have been described in macrophages and macrophage-like cells. Similar activity is well known in L-cells and in both cases it is possible to identify a Ca2+-sensitive K+ conductance as the underlying mechanism. Phagocytosis is a cell function that has been related to membrane hyperpolarization and to slow hyperpolarizing activity. In some cases no changes of electrical activity have been observed during the phagocytic process. Chemotactic factors induce membrane hyperpolarizations in macrophages, but the relation between electrical change and cell motility has not been established. Exocytosis, a is another Ca2+ sensitive cell function that awaits correlation with electrochemical changes. The evidences accumulated to date are compatible with several models for gating and modulation of the voltage-independent K+ conductance by Ca2+. The use of higher resolution techniques, such as patch-clamp, with well defined subpopulations of phagocytic cells may produce the missing link in the transduction of membrane signals into the specifically targeted cell functions.  相似文献   

6.
Plasma membrane (PM) Na+, K+-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na+, K+-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca2+ oscillations in COS-7 cells by enhancing the interactions between Na+, K+-ATPase, inositol 1,4,5-trisphosphate receptor (IP3R) and Ankyrin B (Ank-B) to form a Ca2+ signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca2+ oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca2+ oscillations. These oscillations depend on extracellular Ca2+ concentrations [Ca2+]out and are inhibited by Ni2+. Furthermore, we found that these slow oscillations are Na+out dependent, abolished by Na+/Ca2+ exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca2+ oscillations in COS-7 cells.  相似文献   

7.
Summary Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2+-gated K+ current. The characteristics of the Ca2+-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 m of the intracellular Ca2+, but it was independent of the membrane potential.Charybdotoxin reduced the activity of the Ca2+-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2+-activated K+ channels.  相似文献   

8.
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.  相似文献   

9.
We monitored femtosecond laser induced membrane potential changes in non-excitable cells using patchclamp analysis. Membrane potential hyperpolarization of HeLa cells was evoked by 780 nm, 80 fs laser pulses focused in the cellular cytoplasm at average powers of 30–60 mW. Simultaneous detection of intracellular Ca2+ concentration and membrane potential revealed coincident photogeneration of Ca2+ waves and membrane potential hyperpolarization. By using non-excitable cells, the cell dynamics are slow enough that we can calculate the membrane potential using the steady-state approximation for ion gradients and permeabilities, as formulated in the GHK equations. The calculations predict hyperpolarization that matches the experimental measurements and indicates that the cellular response to laser irradiation is biological, and occurs via laser triggered Ca2+ which acts on Ca2+ activated K+ channels, causing hyperpolarization. Furthermore, by irradiating the cellular plasma membrane, we observed membrane potential depolarization in combination with a drop in membrane resistance that was consistent with a transient laser-induced membrane perforation. These results entail the first quantitative analysis of location-dependent laser-induced membrane potential modification and will help to clarify cellular biological responses under exposure to high intensity ultrashort laser pulses.  相似文献   

10.
11.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

12.
Phototropins (phot1 and phot2) are blue light (BL) receptorsthat mediate responses including phototropism, chloroplast movementand stomatal opening, and increased cytosolic Ca2+. BL absorbedby phototropins activates plasma membrane H+-ATPase in guardcells, resulting in membrane hyperpolarization, and drives K+uptake and stomatal opening. However, it is unclear whetherthe phototropin-mediated Ca2+ increase activates the H+-ATPase.Here, we determined cytosolic Ca2+ concentrations in guard cellprotoplasts (GCPs) from Arabidopsis transformed with aequorin.Cytosolic Ca2+ increased rapidly in response to BL in GCPs fromboth the wild type and phot1 phot2 double mutants, but was mostlysuppressed by an inhibitor of photosynthetic electron flow (DCMU).With depleted external K+, we observed another slower Ca2+ increase,which was phototropin- dependent. Fusicoccin, a H+-ATPase activator,mimicked the effect of BL. The slow Ca2+ increase thus appearsto result from membrane hyperpolarization. The slow Ca2+ increasewas suppressed by external K+ and was restored by blockers ofinward-rectifying K+ channels, CsCl and tetraethylammonium,suggesting the preferential uptake of K+ over Ca2+. Such efficientK+ uptake in response to BL was not found in mesophyll cells.Both the fast and the slow Ca2+ increases were inhibited byCa2+ channel blockers (CoCl2 and LaCl3) and a chelating agent(EGTA). These results indicate that the phototropin-mediatedCa2+ increase was not observed prior to H+-ATPase activationin guard cells and that Ca2+ entered guard cells via Ca2+ channelsthrough photosynthesis and phototropin-mediated membrane hyperpolarization.  相似文献   

13.
The physiological function and the molecular mechanisms of Ca2+-mediated signal transduction processes were studied in the unicellular green alga Eremosphaera viridis by different electrophysiological and microfluorimetric techniques. A sudden blockage of photosynthetic electron transport by darkening or inhibitors causes a transient hyperpolarization of the plasma membrane. For the alga this transient hyperpolarization seems to be an important mechanism to release monovalent ions and to drive the uptake of divalent cations. The transient hyperpolarization is due to the opening of K+ channels and is caused by a rapid transient elevation of the cytosolic free Ca2+ concentration ([Ca2+]cy spike). Different agonists like caffeine or InsP3 which are known to release Ca2+ from internal stores in animal cells, also cause a transient hyperpolarization and a [Ca2+]cy spike, similar to darkening. In Eremosphaera the transient hyperpolarization can be used as an indicator for [Ca2+]cy spikes. The InsP3 gated and the ryanodine/cADPR gated Ca2+ channels which obviously both mediate Ca2+ release from internal stores in Eremosphaera do not seem to be involved in the dark-induced [Ca2+]cy spikes. Besides single [Ca2+]cy spikes, the addition of Sr2+ (or caffeine in the absence of divalent cations) causes repetitive [Ca2+]cy spikes which may last hours and resemble [Ca2+]cy oscillations observed in excitable animal cells. These observations suggest that some principal molecular mechanisms causing single or repetitive [Ca2+]cy spikes are conserved from animal to plant cells.  相似文献   

14.
Changes in fluorescence intensity of thiodicarbocyanine, DiS-C3(5), were correlated with direct microelectrode potential measurements in red blood cells from Amphiuma means and applied qualitatively to evaluate the effects of extracellular Ca2+, K+ and pH on the membrane potential of human red cells. Increasing extracellular [Ca2+] from 1.8 to 15 mM causes a K+-dependent hyperpolarization and decrease in fluorescence intensity in Amphiuma red cells. Both the hyperpolarization and fluorescence change disappear when the temperature is raised from 17 to 37°C. No change in fluorescence intensity is observed in human red cells with comparable increase in extracellular Ca2+ in the temperature range 5–37°C. Increasing the extracellular pH, however, causes human red cells to respond to an increase in extracellular Ca2+ with a significant but temporary loss in fluorescence intensity. This effect is blocked by EGTA, quinine or by increasing extracellular [K+], indicating that at elevated extracellular pH, human erythrocytes respond to an increase in extracellular Ca2+ with an opening of K+ channels and associated hyperpolarization of the plasma membrane.  相似文献   

15.
Summary The fluorescent anionic dye, bisoxonol, and flow cytometry have been used to monitor changes in the membrane potential of rat thymocytes exposed to the B subunit of cholera toxin. The B subunit induced a rapid hyperpolarization, which was due to activation of a Ca2+-sensitive K+ channel. Reduction of extracellular Ca2+ to <1 m by the addition of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid immediately abolished the hyperpolarization caused by the B subunit. Cells treated with quinine and tetraethylammonium lost their ability to respond to the B subunit, whereas 4-aminopyridine did not have any effect. Thus, calcium-sensitive and not voltage-gated K+ channels appeared to be responsible for the hyperpolarization. The results of ion substitution experiments indicated that extracellular Na+ was not essential for changes in membrane potential. Further studies with ouabain, amiloride and furosemide demonstrated that electrogenic Na+/K+ ATPase, Na+/H+ antiporter and Na+/K+/Cl cotransporter, respectively, were not involved in the hyperpolarization process induced by the B subunit. Thus, crosslinking of several molecules of ganglioside GM1 on the cell surface of rat thymocytes by the pentavalent B subunit of cholera toxin modulated plasma membrane permeability to K+ by triggering the opening of Ca2+-sensitive K+ channels. A role for gangliosides in regulating ion permeability would have important implications for the function of gangliosides in various cellular phenomena.  相似文献   

16.
K+ channels, membrane voltage, and intracellular free Ca2+ are involved in regulating proliferation in a human melanoma cell line (SK MEL 28). Using patch-clamp techniques, we found an inwardly rectifying K+ channel and a calcium-activated K+ channel. The inwardly rectifying K+ channel was calcium independent, insensitive to charybdotoxin, and carried the major part of the whole-cell current. The K+ channel blockers quinidine, tetraethylammonium chloride and Ba2+ and elevated extracellular K+ caused a dose-dependent membrane depolarization. This depolarization was correlated to an inhibition of cell proliferation. Charybdotoxin affected neither membrane voltage nor proliferation. Basic fibroblast growth factor and fetal calf serum induced a transient peak in intracellular Ca2+ followed by a long-lasting Ca2+ influx. Depolarization by voltage clamp decreased and hyperpolarization increased intracellular Ca2+, illustrating a transmembrane flux of Ca2+ following its electrochemical gradient. We conclude that K+ channel blockers inhibit cell-cycle progression by membrane depolarization. This in turn reduces the driving force for the influx of Ca2+, a messenger in the mitogenic signal cascade of human melanoma cells. Received: 9 May 1995/Revised: 30 January 1996  相似文献   

17.
Simulation of intracellular Ca2+ oscillation in a sympathetic neurone   总被引:7,自引:0,他引:7  
Three different theoretical models were considered for the mechanism of the oscillation of the intracellular free Ca2+ ([Ca2+]i) linked to the K+ conductance of the plasma membrane (GK) observed in bullfrog sympathetic ganglion cells. The models assumed a Ca2+-induced Ca2+ release mechanism, an active Ca2+ uptake mechanism at a Ca2+ reservoir site in the ganglion cell, and a Michaelis—Menten type relationship between [Ca2+]i and GK. Including both active and passive Ca2+ transport mechanisms at the plasma membrane, either a one-compartment model or a two-compartment model for the intracellular Ca2+ store reconstructed successfully the [Ca2+]i oscillation and rhythmic membrane hyperpolarizations observed in the ganglion cell, and simulated most of their characteristics. On the other hand, a two-compartment model disregarding of Ca2+ transport at the plasma membrane failed to reproduce the oscillations of [Ca2+]i and membrane potential.  相似文献   

18.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

19.
Ionophore A23187-mediated Ca2+-induced oscillations in the conductance of the Ca2+-sensitive K+ channels of human red cells were monitored with ion specific electrodes. The membrane potential was continuously reflected in CCCP-mediated pH changes in the buffer-free medium, changes in extracellular K+ activity were followed with a K+-selective electrode, and changes in the intracellular concentration of ionized calcium were calculated on the basis of cellular 45Ca content. An increased cellular 45Ca content at the successive minima of the oscillations where the K+ channels are closed indicates that the activation of the channels might be a (dCa2+/dt)-sensitive process and that accommodation to enhanced levels of intracellular free calcium may occur. An incipient inactivation of the K+ channels at intracellular ionized calcium levels of about 10 μM and a concurrent membrane potential of about −65 mV was observed. At a membrane potential of about −70 mV and an intracellular concentration of about 2·10−4M no inactivation of K+ channels took place. Inactivation of the K+ channels is suggested to be a compound function of the intracellular level of free calcium and the membrane potential. The observed sharp peak values in cellular 45Ca content support the notion that a necessary component of the oscillatory system is a Ca2+ pump operating with a significant delay in the activation/inactivation process in response to changes in cellular concentration of ionized calcium.  相似文献   

20.
The role of K+ as current carrier during the slow membrane hyperpolarizations (SH) elicited by iontophoretic Ca2+ injections into macrophage polykaryons is studied. The intracellular K+ activity (aK) and the K+ equilibrium potential (EK) are measured using ion-sensitive microelectrodes. The mean value of aK is 84 ± 5 mM in a culture medium containing 5.3 mM K+, but increases to 100 ± 8 mM when the extracellular K+ concentration is raised to 30.3 mM. Under the same conditions the values of EK obtained from the Nernst equation are −81 ± 2 mV and −40 ± 2 mV, respectively. The reversal potentials (ER) of the SH are calculated from changes observed in transmembrane potential and input resistance, according to an equivalent model based only on passive ionic fluxes. The mean ER values obtained are −74 ± 8 mV in the presence of low K+ concentration and −37 ± 3 mV for the high K+ medium. These values are significantly smaller than the estimated EK for the corresponding situations. Evidence for the existence of an electrogenic (Na+ + K+)-ATPase activity is also presented. The evidence indicates that an increase in the membrane potassium permeability can account for about 90% of the total permeability change occurring during the SH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号