首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Wang Y  Robbins KR  Rekaya R 《PloS one》2010,5(10):e13239
Assessing conservation/divergence of gene expression across species is important for the understanding of gene regulation evolution. Although advances in microarray technology have provided massive high-dimensional gene expression data, the analysis of such data is still challenging. To date, assessing cross-species conservation of gene expression using microarray data has been mainly based on comparison of expression patterns across corresponding tissues, or comparison of co-expression of a gene with a reference set of genes. Because direct and reliable high-throughput experimental data on conservation of gene expression are often unavailable, the assessment of these two computational models is very challenging and has not been reported yet. In this study, we compared one corresponding tissue based method and three co-expression based methods for assessing conservation of gene expression, in terms of their pair-wise agreements, using a frequently used human-mouse tissue expression dataset. We find that 1) the co-expression based methods are only moderately correlated with the corresponding tissue based methods, 2) the reliability of co-expression based methods is affected by the size of the reference ortholog set, and 3) the corresponding tissue based methods may lose some information for assessing conservation of gene expression. We suggest that the use of either of these two computational models to study the evolution of a gene's expression may be subject to great uncertainty, and the investigation of changes in both gene expression patterns over corresponding tissues and co-expression of the gene with other genes is necessary.  相似文献   

2.
Extracting three-way gene interactions from microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: It is an important and difficult task to extract gene network information from high-throughput genomic data. A common approach is to cluster genes using pairwise correlation as a distance metric. However, pairwise correlation is clearly too simplistic to describe the complex relationships among real genes since co-expression relationships are often restricted to a specific set of biological conditions/processes. In this study, we described a three-way gene interaction model that captures the dynamic nature of co-expression relationship between a gene pair through the introduction of a controller gene. RESULTS: We surveyed 0.4 billion possible three-way interactions among 1000 genes in a microarray dataset containing 678 human cancer samples. To test the reproducibility and statistical significance of our results, we randomly split the samples into a training set and a testing set. We found that the gene triplets with the strongest interactions (i.e. with the smallest P-values from appropriate statistical tests) in the training set also had the strongest interactions in the testing set. A distinctive pattern of three-way interaction emerged from these gene triplets: depending on the third gene being expressed or not, the remaining two genes can be either co-expressed or mutually exclusive (i.e. expression of either one of them would repress the other). Such three-way interactions can exist without apparent pairwise correlations. The identified three-way interactions may constitute candidates for further experimentation using techniques such as RNA interference, so that novel gene network or pathways could be identified.  相似文献   

3.
Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on pieces of experimental genetic perturbation evidence from manually reading primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for mammalian organ development.  相似文献   

4.
To explore gene-environment interactions, based on temporal gene expression information, we analyzed gene and treatment information intensively and inferred interaction networks accordingly. The main idea is that gene expression reflects the response of genes to environmental factors, assuming that variations of gene expression occur under different conditions. Then we classified experimental conditions into several subgroups based on the similarity of temporal gene expression profiles. This procedure is useful because it allows us to combine diverse gene expression data as they become available, and, especially, allowing us to lay the regulatory relationships on a concrete biological basis. By estimating the activation points, we can visualize the gene behavior, and obtain a consensus gene activation order, and hence describe conditional regulatory relationships. The estimation of activation points and building of synthetic genetic networks may result in important new insights in the ongoing endeavor to understand the complex network of gene regulation.  相似文献   

5.
6.
7.
Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.  相似文献   

8.
9.
10.
11.
We present a new WWW-based tool for plant gene analysis, the Arabidopsis Co-Expression Tool (ACT), based on a large Arabidopsis thaliana microarray data set obtained from the Nottingham Arabidopsis Stock Centre. The co-expression analysis tool allows users to identify genes whose expression patterns are correlated across selected experiments or the complete data set. Results are accompanied by estimates of the statistical significance of the correlation relationships, expressed as probability (P) and expectation (E) values. Additionally, highly ranked genes on a correlation list can be examined using the novel clique finder tool to determine the sets of genes most likely to be regulated in a similar manner. In combination, these tools offer three levels of analysis: creation of correlation lists of co-expressed genes, refinement of these lists using two-dimensional scatter plots, and dissection into cliques of co-regulated genes. We illustrate the applications of the software by analysing genes encoding functionally related proteins, as well as pathways involved in plant responses to environmental stimuli. These analyses demonstrate novel biological relationships underlying the observed gene co-expression patterns. To demonstrate the ability of the software to develop testable hypotheses on gene function within a defined biological process we have used the example of cell wall biosynthesis genes. The resource is freely available at http://www.arabidopsis.leeds.ac.uk/ACT/  相似文献   

12.

Background  

A major goal of computational studies of gene regulation is to accurately predict the expression of genes based on the cis-regulatory content of their promoters. The development of computational methods to decode the interactions among cis-regulatory elements has been slow, in part, because it is difficult to know, without extensive experimental validation, whether a particular method identifies the correct cis-regulatory interactions that underlie a given set of expression data. There is an urgent need for test expression data in which the interactions among cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets would facilitate the development and comparison of computational methods that predict gene expression patterns from promoter sequence.  相似文献   

13.
Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., “guilt-by-association”). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response.  相似文献   

14.
Recently, the concept of mutual information has been proposed for inferring the structure of genetic regulatory networks from gene expression profiling. After analyzing the limitations of mutual information in inferring the gene-to-gene interactions, this paper introduces the concept of conditional mutual information and based on it proposes two novel algorithms to infer the connectivity structure of genetic regulatory networks. One of the proposed algorithms exhibits a better accuracy while the other algorithm excels in simplicity and flexibility. By exploiting the mutual information and conditional mutual information, a practical metric is also proposed to assess the likeliness of direct connectivity between genes. This novel metric resolves a common limitation associated with the current inference algorithms, namely the situations where the gene connectivity is established in terms of the dichotomy of being either connected or disconnected. Based on the data sets generated by synthetic networks, the performance of the proposed algorithms is compared favorably relative to existing state-of-the-art schemes. The proposed algorithms are also applied on realistic biological measurements, such as the cutaneous melanoma data set, and biological meaningful results are inferred.  相似文献   

15.
Competitive gene set tests are commonly used in molecular pathway analysis to test for enrichment of a particular gene annotation category amongst the differential expression results from a microarray experiment. Existing gene set tests that rely on gene permutation are shown here to be extremely sensitive to inter-gene correlation. Several data sets are analyzed to show that inter-gene correlation is non-ignorable even for experiments on homogeneous cell populations using genetically identical model organisms. A new gene set test procedure (CAMERA) is proposed based on the idea of estimating the inter-gene correlation from the data, and using it to adjust the gene set test statistic. An efficient procedure is developed for estimating the inter-gene correlation and characterizing its precision. CAMERA is shown to control the type I error rate correctly regardless of inter-gene correlations, yet retains excellent power for detecting genuine differential expression. Analysis of breast cancer data shows that CAMERA recovers known relationships between tumor subtypes in very convincing terms. CAMERA can be used to analyze specified sets or as a pathway analysis tool using a database of molecular signatures.  相似文献   

16.
Wang CY  Huang WT 《Biometrics》2000,56(1):98-105
We consider estimation in logistic regression where some covariate variables may be missing at random. Satten and Kupper (1993, Journal of the American Statistical Association 88, 200-208) proposed estimating odds ratio parameters using methods based on the probability of exposure. By approximating a partial likelihood, we extend their idea and propose a method that estimates the cumulant-generating function of the missing covariate given observed covariates and surrogates in the controls. Our proposed method first estimates some lower order cumulants of the conditional distribution of the unobserved data and then solves a resulting estimating equation for the logistic regression parameter. A simple version of the proposed method is to replace a missing covariate by the summation of its conditional mean and conditional variance given observed data in the controls. We note that one important property of the proposed method is that, when the validation is only on controls, a class of inverse selection probability weighted semiparametric estimators cannot be applied because selection probabilities on cases are zeroes. The proposed estimator performs well unless the relative risk parameters are large, even though it is technically inconsistent. Small-sample simulations are conducted. We illustrate the method by an example of real data analysis.  相似文献   

17.
For observational longitudinal studies of geriatric populations, outcomes such as disability or cognitive functioning are often censored by death. Statistical analysis of such data may explicitly condition on either vital status or survival time when summarizing the longitudinal response. For example a pattern-mixture model characterizes the mean response at time t conditional on death at time S = s (for s > t), and thus uses future status as a predictor for the time t response. As an alternative, we define regression conditioning on being alive as a regression model that conditions on survival status, rather than a specific survival time. Such models may be referred to as partly conditional since the mean at time t is specified conditional on being alive (S > t), rather than using finer stratification (S = s for s > t). We show that naive use of standard likelihood-based longitudinal methods and generalized estimating equations with non-independence weights may lead to biased estimation of the partly conditional mean model. We develop a taxonomy for accommodation of both dropout and death, and describe estimation for binary longitudinal data that applies selection weights to estimating equations with independence working correlation. Simulation studies and an analysis of monthly disability status illustrate potential bias in regression methods that do not explicitly condition on survival.  相似文献   

18.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

19.
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号