首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

2.
Inherent in any biological control program is the risk of nontarget effects. Pseudacteon tricuspisBorgmeier, a parasitoid phorid fly, has been introduced to the United States from South America as a potential biocontrol agent of the red imported fire ant, Solenopsis invictaBuren. We conducted tests of host specificity on introduced populations of P. tricuspis, which are attracted to alarm pheromones released by their hosts during events such as mound disturbances and interspecific interactions. We monitored disturbed mounds of S. invicta and its close congener, S. geminata(F.), during the expansion of P. tricuspis across north Florida and after populations had been established for ~3 years. We also tested host acceptance in established populations of P. tricuspis by offering trays containing S. invicta, S. geminata, and 14 additional ant species representing 12 different non-Solenopsis genera. Although P. tricuspiswas commonly observed to hover over and attempt to oviposit on S. invicta, we never observed any parasitization attempts on any other ant species. As predicted by laboratory tests, released populations of P. tricuspis appear to be highly host specific and pose no obvious threat to nontarget species.  相似文献   

3.
Cleptobiosis in the antEctatomma ruidum in Nicaragua   总被引:1,自引:0,他引:1  
Summary Observations of the ponerine antEctatomma ruidum suggested that this is a cleptobiotic species which appears to use the pheromone trails of other ant species to locate individual workers carrying food. To test this hypothesis an arena was set up to quantify the position of eachE. ruidum that entered the arena with respect to its position on or off a well-established foraging trail ofPheidole radoszkowskii, a myrmicine. Encounters betweenE. ruidum andP. radoszkowskii are described. Quantitative data and behavioral observations support the cleptobiosis hypothesis. This study adds yet another dimension to the diverse array of foraging strategies of the Ponerinae.  相似文献   

4.
Summary Pogonomyrmex barbatus and Novomessor cockerelli, sympatric species of harvester ants in the Lower Sonoran desert, compete for seed resources. This study reports on a method of interference competition. Early in the morning, before P. barbatus' activity period, N. cockerelli fills the nest entrances of P. barbatus with sand. This delays the beginning of the P. barbatus activity period for 1–3 h. P. barbatus colonies near N. cockerelli nests were more likely to be plugged. Nest-plugging shifts the typical daily sequence of P. barbatus activities, including the onset of foraging, forward towards midday, when high temperatures force the colony back inside the nest. P. barbatus colonies do not compensate for late emergence or events impeding foraging by increasing foraging rate. Thus nest-plugging by N. cockerelli decreases the foraging capacity of P. barbatus colonies.  相似文献   

5.
In tropical ecosystems, ants represent a substantial portion of the animal biomass and contribute to various ecosystem services, including pest regulation and pollination. Dominant ant species are known to determine the structure of ant communities by interfering in the foraging of other ant species. Using bait and pitfall trapping experiments, we performed a pattern analysis at a fine spatial scale of an ant community in a very simplified and homogeneous agroecosystem, that is, a single‐crop banana field in Martinique (French West Indies). We found that the community structure was driven by three dominant species (Solenopsis geminata, Nylanderia guatemalensis, and Monomorium ebeninum) and two subdominant species (Pheidole fallax and Brachymyrmex patagonicus). Our results showed that dominant and subdominant species generally maintained numerical dominance at baits across time, although S. geminata, M. ebeninum, and B. patagonicus displayed better abilities to maintain dominance than P. fallax and N. guatemalensis. Almost all interspecific correlations between species abundances, except those between B. patagonicus and N. guatemalensis, were symmetrically negative, suggesting that interference competition prevails in this ground‐dwelling ant community. However, we observed variations in the diurnal and nocturnal foraging activity and in the daily occurrence at baits, which may mitigate the effect of interference competition through the induction of spatial and temporal niche partitioning. This may explain the coexistence of dominant, subdominant, and subordinate species in this very simplified agroecosystem, limited in habitat structure and diversity.  相似文献   

6.
Invasive ants are a significant conservation concern and can have far-reaching effects in ecosystems they invade. We used the experimental control of ant numbers on two pairs of small (<5 ha) offshore islets dominated by either the big-headed ant, Pheidole megacephala or the tropical fire ant, Solenopsis geminata to investigate the influence of these species on seabird hatching success, fledging success and weight. Limited unpublished observations of both ant species attacking nesting seabirds exist, but the frequency of attacks or how they affect seabird growth and survival are unknown. Island-wide treatments with hydramethylnon resulted in the eradication of P. megacephala and the temporary reduction of S. geminata densities. No difference in hatching success, growth, or fledging success of Wedge-tailed Shearwaters (Puffinus pacificus), a common colonial nesting seabird in the Hawaiian Islands was observed on the pair of islets dominated by P. megacephala. On islets dominated by S. geminata, ant control resulted in a temporary increase in fledging success. Injury frequency increased dramatically on the untreated islet (8.3–100%) while remaining the same on the treated islet (27–38%). Severely injured chicks (i.e., chicks that lost >20% of tissue on their feet) weighed significantly less than uninjured chicks and did not fledge. It is unclear if the chicks were being preyed upon or stung in defense of nearby ant colonies. Radical changes in invasive ant populations have been noted, and booming ant populations could cause short-term, but widespread damage to seabird colonies. The negative effects of invasive ants on seabirds may be difficult to detect, and therefore unknown or underestimated throughout the world where the two groups overlap.  相似文献   

7.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

8.
Host orientation by two nitidulid beetles was compared: Stelidota geminata (Say), which is very broad in its' host range, and Stelidota octomaculata (Say), a species whose feeding is restricted primarily to acorns. In a no-choice assay, both species responded to all food substrates offered and neither showed a significant preference among substrates (except banana versus wood fungi for S. octomaculata), or between aseptic and inoculated treatments; however, S. geminata readily displayed both phototactic flights and host-orienting flights, whereas S. octomaculata never exhibited phototactic flight and never responded to food odors by flying to the source. Furthermore, when upwind-walking response was compared, S. octomaculata walked to the source at a rate of 0.16±0.01 cm/s, which was significantly lower than that of S. geminata, with a rate of 0.54±0.02 cm/s. Turning frequency on the way to the source also differed between the two species, whereas distance traveled, number of pauses, and duration of pauses did not differ significantly. We submit that both species represent olfactory generalists, and that the restricted host range of S. octomaculata compared to S. geminata is not mediated by differences in long-range response to host odors, but rather is due to differences in other behaviors such as a reduced rate of locomotion, post-landing behavior, and possibly ecological factors.  相似文献   

9.
Lloyd W. Morrison 《Oecologia》1999,120(1):113-122
Indirect effects, which occur when the impact of one species upon another requires the existence of an intermediary species, are apparently very common and may be of greater magnitude than direct effects. Behaviorally mediated indirect effects occur when one species affects the behavior of a second, which in turn affects how that species interacts with a third. I studied behaviorally mediated indirect effects on the mechanisms of competition in two congeneric fire ant species in the presence and absence of parasitoid phorid flies, which parasitized only one ant species. In observational and experimental field studies, the presence of native Texas phorid flies in the genus Pseudacteon decreased food retrieval by their host, Solenopsis geminata (F.), by as much as 50%. In the presence of phorid flies, many S. geminata workers assumed a stationary, curled defensive posture and did not forage. Although the phorid parasitoids had a relatively large effect on exploitative competition, there was no measurable effect on interference competition. Fierce interspecific aggression was observed between S. geminata and S. invicta Buren, and the presence of phorids had no effect on the outcome of these contests. The indirect effects of Pseudacteon parasitoids on Solenopsis fire ant resource retrieval appear to be larger than the direct effect of mortality. Some aspects of the foraging behavior of these Solenopsis species may be, in part, evolutionary adaptations to phorid parasitoid pressure. Because of the relatively large indirect effects, South American Pseudacteon phorids may be promising biocontrol agents of imported fire ants, S. invicta, in the USA. In a laboratory study, a single South American Pseudacteon female was able to significantly decrease food retrieval rates of a North American population of the imported fire ant, S. invicta. Received: 11 May 1998 / Accepted: 18 April 1999  相似文献   

10.
Summary A month-long study was conducted on the comparative foraging behavior of 20 colonies of the leafcutting ant, Atta cephalotes L. in Santa Rosa National Park, Guanacaste Province, Costa Rica. The study was conducted during the middle of the wet season, when trees had mature foliage and the ants were maximally selective among species of potential host plants. The colonies always gathered leaves from more than a single tree species but on average one species constituted almost half the diet with the remaining species being of geometrically decreasing importance. Colonies exhibited greater diversity in their choice of leaves and lower constancy of foraging when the average quality of resource trees was lower, as predicted by elementary optimal foraging theory. Furthermore, the ants were more selective of the species they attacked at greater distances from the nest. However, the ants sometimes did not attack apparently palatable species, and often did not attack nearby individuals of species they were exploiting at greater distances.A classical explanation for why leafcutting ants exploit distant host trees when apparently equally good trees are nearer, is that the ants are pursuing a strategy of conserving resources to avoid long-term overgrazing pressure on nearby trees. We prefer a simpler hypothesis: (1) Trees of exploited species exhibit individual variation in the acceptability of their leaves to the ants. (2) The abundance of a species will generally increase with area and radial distance from the nest, so the probability that at least one tree of the species will be acceptable to the ants also increases with distance. (3) The ants forage using a system of trunk-trails cleared of leaf litter, which significantly reduces their travel time to previously discovered, high-quality resource trees (by a factor of 4- to 10-fold). (4) Foragers are unware of the total pool of resources available to the colony. Therefore once scouts have chanced upon a tree which is acceptable, the colony will concentrate on harvesting from that tree rather than searching for additional sources of leaves distant from the established trail.  相似文献   

11.
J. M. Gómez  R. Zamora 《Oecologia》1992,91(3):410-418
Summary We have analysed the importance of worker ants (Proformica longiseta, Formicidae) as pollinators of a mass-flowering woody plant (Hormathophylla spinosa, Cruciferae) in the high-mountain area of the Sierra Nevada (southern Spain). We have quantified the abundance and foraging behavior of P. longiseta in comparison with winged flower visitors. We have also examined, by means of selective exclusion experiments, the role of ants as true pollinators, comparing them with the winged flower visitors. A total of 39 species belonging to 18 families visited the flowers of H. spinosa. All the visitors were winged insects, except P. longiseta, a species which alone made up more than 80% of the total number of insects found on the flowers. All pollinators of H. spinosa had similar foraging patterns, with 98% of total movements made between flowers within the same plant. Ants always made contact with the plant reproductive organs when foraging for nectar, and transferred large numbers of pollen grains. However, pollen exposed to ants for brief periods exhibited reduced percentage of germination. P. longiseta is both the most abundant and spatio-temporally predictable flower visitor of H. spinosa. These characteristics, weighted by their flower visitation rate, make worker ants the pollinator that maintains the strongest mutualistic interaction with H. spinosa. The exclusion experiments show that workers behave as true pollinators, since they contribute to increase the number of viable seeds produced by H. spinosa. The key factor of this interaction is mainly the great density of workers throughout the flowering period. In short, the H. spinosa-P. longiseta mutualistic interaction mainly depends on its high probability of occurrence.  相似文献   

12.
Orrock JL  Danielson BJ 《Oecologia》2004,140(4):662-667
We used foraging trays to compare how oldfield mice, Peromyscus polionotus, altered foraging in response to the presence of fire ants, Solenopsis invicta, and in the presence of direct (predator urine) and indirect (sheltered or exposed microhabitat, moonlight, and precipitation) indicators of predation risk. Foraging reductions elicited by S. invicta were greater than reductions in response to well-documented indicators of risk (i.e., moonlit nights) and the presence of predator urine. The presence of S. invicta always led to reduced foraging, but the overall impact of S. invicta was dependent upon microhabitat and precipitation. When S. invicta was not present, foraging was greater in sheltered microhabitats compared to exposed microhabitats. S. invicta made sheltered microhabitats equivalent to more risky exposed microhabitats, and this effect was especially pronounced on nights without precipitation. The effect of S. invicta suggests that interactions with S. invicta may entail a potentially heavy cost or that presence of S. invicta may represent a more reliable indicator of imminent competition or predation compared to indirect cues of risk and predator urine. The presence of S. invicta led to reduced foraging under situations when foraging activity would otherwise be greatest (i.e., under vegetative cover), potentially reducing habitat quality for P. polionotus and the distribution of seeds consumed by rodents.  相似文献   

13.
Summary Feeding relationships of adultEuparia castanea Serville andMartinezia dutertrei Chalumeau with their ant hosts were studied in the laboratory using the radioactive tracer32P.Euparia castanea was tested withSolenopsis geminata (F.),Martinezia dutertrei Chalumeau was tested withS. invicta Buren,S. richteri Forel, andS. geminata. Unlabeled beetles were exposed to various radioisotope labeled conditions for 24 hr and then checked for acquired radioactivity. In whole colony tests, both species of beetles acquired radioactivity.M. dutertrei obtained food from live ants, butE. castanea did not. Both species of beetles ate ant larvae.E. castanea also obtained food from ant larvae by strigilation. Neither species of beetle fed on ant feces or other secretions on the substrate. Both species of beetles obtained food by strigilation from fresh and decomposed worker ant cadavers.M. dutertrei also ate both kinds of ant cadavers. Both species of beetles also ate dead house flies, indicative of scavenging or feeding on ant booty.Martinezia dutertrei showed no preference for any particular ant species. Ants did not obtain food by trophallaxis or glandular secretion from either species of beetle. Martinezia dutertrei Chalumeau, 1983 (=Myrmecaphodius excavaticollis Auct.,nec Blanchard 1843).This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation for its use by the U.S. Department of Agriculture.  相似文献   

14.
Summary We investigated individual foraging components of the western harvester ant,Pogonomyrmex occidentalis, in the native seed background of a shrub-steppe environment. Our study identified factors affecting foraging movements and seed selection by individual ants. Some assumptions and predictions of central-place foraging theory and a correlated random walk were evaluated for individual foragers. Results showed that ant size was only weakly correlated with the seed sizes harvested; seed size was a more important constraint than a predictor of seed selection. Individual ants spent more time in localized search behavior than traveling between search areas and nests.P. occidentalis foragers encountered seeds randomly with respect to time, and handled a mean of 1.7 seeds/trip. A correlation of increased search effort with greater travel distances was consistent with central-place foraging theory but, contrary to it, search and travel effort were not associated with energetic reward.Individual ants exhibited fidelity in both search site and native seed species. Spatial analyses of foraging movements showed a highly oriented travel path while running, and an area-restricted path while searching. Searching ants moved in a manner consistent with a correlated random walk. The deterministic component of patch fidelity and the stochastic component of search may override energetic foraging decisions in individualP. occidentalis ants.  相似文献   

15.
In contrast to the widespread extirpation of native fire ants (Solenopsis geminata) across southern US following the invasion by imported red fire ants (S. invicta), some residential areas of Austin form unexpected refuges for native fire ants. Ironically, these urban environments provide refuges for the native fire ants while adjacent natural habitats have been overrun by invasive fire ants. Resistance to invasive fire ants in these urban areas occurs mainly in older residential properties constructed prior to the S. invicta invasion, while more recent construction has allowed establishment by S. invicta. The invasive ability of S. invicta is often attributed to escape from parasitoids and efficient dispersal of polygyne multiple queen colonies. Here we also show the importance of landscape parameters in the invasion process, where low levels of disturbance and continuous plant cover in older residential areas form possible barriers to colonization. Dense leaf cover (high NDVI) was also found to be associated with native ant refuges. Long term residential land ownership may have resulted in lower recent disturbance levels and increased plant cover that support refuges of native fire ants.  相似文献   

16.
17.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

18.
Interspecific competition has been shown to play a role in the structure of ant communities. However, the role of foraging behavior and the type of competition that results from this behavior has been less investigated. Here we present results from baiting experiments at various scales to determine the degree of exploitative and interference competition between two Neotropical ants (Hymenoptera: Formicidae) in pastures in the Atlantic coast of Nicaragua. Results suggest that the coexistence of Solenopsis geminata (Fabricius) and Pheidole subarmata (Mayrs) in Neotropical pastures is the result of a discovery/dominance tradeoff between these two species. Although S. geminata is a good interference competitor and can defend large resources, P. subarmata is a good exploitative competitor and arrives at resources faster than S. geminata. In an environment with mixed resources (large and small), these two species can co-exist. We discuss the implication of this for the invasion potential of S. geminata.  相似文献   

19.
Mosaics of exclusive foraging territories, produced by intra-and interspecific competition, are commonly reported from arboreal ant communities throughout the tropics and appear to represent a recurring feature of community organization. This paper documents an ant mosaic within mangrove forests of Panama and examines the behavioral mechanisms by which one of the common species, Azteca trigona, maintains its territories. Most of the mangrove canopy is occupied by mutually exclusive territories of the ants A. trigona, A. velox, A. instabilis, and Crematogaster brevispinosa. When foraging workers of A. trigona detect workers of these territorial species, they organize an alarm recruitment response using pheromonal and tactile displays. Nestmates are attracted over short distances by an alarm pheromone originating in the pygidial gland and over longer distances by a trail pheromone produced by the Pavan's gland. Recruits are simultaneously alerted by a tactile display. No evidence was found for chemical marking of the territory. Major workers are proportionally more abundant at territory borders than on foraging trails in the interior of the colony. The mechanisms of territory defense in A. trigona are remarkably similar to those of ecologically analogous ants in the Old World tropics.  相似文献   

20.
I experimentally excluded ants from randomly selected spruce trees Picea abies near colonies of the wood ant Formica aquilonia. Foraging activity of birds in these trees was then compared to the foraging activity of birds in neighboring spruce trees, where ants were allowed to continue foraging. Birds which foraged in the foliage showed the effects of competition with ants: they visited the trees without ants more frequently, and for longer periods. In addition, the insects and spiders that they utilized as food were more abundant in the foliage of trees without ants. Cone-foraging birds, however, which fed on seeds in cones at the tops of the trees, did not show a preference for trees without ants. The differences of tree usage between foliage-gleaning and coneforaging birds can be explained by alteration of the birds' food supply by wood ants: ants did not feed on seeds in cones, and so did not compete with cone-foraging birds. However, foraging wood ants did feed on arthropods living in the foliage, thus reducing the amount of food available to birds there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号