首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the acridine orange–dermatan sulfate system, free and bound dye can be distinguished from each other spectroscopically. This permits the use of fluorometric methods to study the binding of acridine orange to the acid mucopolysaccharide dermatan sulfate. Experiments were conducted at 24°C in 10?3 M citrate/phosphate buffer at pH = 7.0. The binding of the dye is highly cooperative, as evidenced by considerable interaction between adjacent bound dye molecules. Analysis of the data indicates that dermatan sulfate binds 2.3 ± 0.3 mol of acridine orange per dermatan sulfate uronic acid residue with a cooperative binding constant, Kq ranging from 4.9 to 6.0 × 105 M?1 which corresponds to a free energy of 7.74 ? ΔG° ? 7.86. The cooperativity parameter q apparently increases with increasing polymer-to-dye ratio.  相似文献   

2.
Binding isotherms for acridine orange (AO)–heparin systems can be evaluated solely on the basis of quantitative fluorescence spectroscopic measurements. The evaluation of thermodynamic parameters indicates that the interactions of AO with heparins from several animal sources are similar to each other in magnitude. Binding is highly exothermic (ΔH = ?6 kcal mol?1) and is stabilized by dye–polymer and dye–dye (coopertive) interactions, as well as by entropic factors (ΔS = +7 e.u.). The predominant stabilizing factor appears to be the electrostatic attraction between the AO cation and the heparin polyanion, although the other factors are important as well. At 24°C the value of the cooperative binding constants for the various heparins range from 8.8 to 11.3 × 105M?1, corresponding to a free energy of ?8 kcal mol?1. The degree of cooperativity, which is a direct measure of dye–dye interaction, varies with polymer:dye ratio; the theoretical basis for this variation remains to be elucidated. Electrophoretic data indicate that each heparin sample consists of a mixture of species, each with its own charge density. This precludes definitive interpretation of observed small differences in the values of the thermodynamic parameters among the various samples until each sample can be resolved into its components.  相似文献   

3.
Aggregated complexes of acridine orange with dermatan and chondroitin sulfates have been studied in aqueous solution by absorption and circular dichroism spectroscopy. Aggregation was found to be favored at high-dye and glycosaminoglycan concentrations, and in solutions where anionic sites of the glycosaminoglycan are effectively complexed with dye. The aggregates can be removed from solution by centrifugation at 27,000 × g for 1 hr or by filtration through a membrane containing pores of 0.1 μm diameter. The aggregated complexes exhibit large-magnitude-ellipticity circular dichroism bands. In addition, the circular dichroism spectrum observed for a solution containing aggregated acridine orange/chondroitin 4-sulfate complexes is nearly a mirror image of that obtained for aggregated acridine orange/dermatan sulfate complexes. Cooperative alterations (sharp transitions) in the circular dichroism ellipticities of the aggregates occur at elevated temperatures, and result in spectroscopically distinct aggregates upon cooling. The circular dichroism properties and temperature effects are attributed to a supramolecular ordering of acridine orange/glycosaminoglycan complexes within the aggregates, which can be reorganized to a more stable form at high temperatures. Mixed aggregates, containing two different glycosaminoglycans, can be formed. The circular dichroism properties of the mixed aggregates also indicate the existence of long-range order in the arrangement of the complexes. Mixed aggregates containing dermatan sulfate and either chondroitin 4-sulfate or chondroitin 6-sulfate resemble pure dermatan sulfate aggregates in circular dichroism characteristics.  相似文献   

4.
Summary Two kinds of changes were found in ultraviolet spectrum of acridine orange bound to polyphosphate and native or denatured DNA: (a) changes similar to those caused by aggregation in the solutions of pure acridine orange (i.e. blue shifts of the bands at 37300 cm–1 and 43670 cm–1, a decrease of absorbance of the band at 34600 cm–1 and an increase of absorbance of the band at 43670 cm–1), which were observed at those ratiosP/D, when the dye formed aggregates on the surface of the polyanion; (b) a decrease of absorbance in the whole near ultraviolet region, which had high value even when isolated dye molecules were bound to the polyanion. While the first kind of changes is due to mutual interactions between the aggregated acridine orange molecules, the second kind can be explained as due to interaction of the dye molecules with adjacent chromophores of the polyanion and/or solvent. The maximum value of the hypochromic effect in the near ultraviolet maximum was higher for complexes of denatured DNA than for complexes of native DNA.  相似文献   

5.
The absorption spectra and circular dichroism (CD) have been measured for aqueous solutions of acridine orange of a constant concentration, [D] = 5 × 10?5M, mixed with poly(S-carboxyethyl-L -cysteine) in various mixing ratios, [P]/[D], ranging from 330 to 11, at different pH. The absorption spectra of the dye–polymer solutions are hypochromic, and the main band is located at 470 nm, accompanying a shoulder at 500 nm. At alkaline pH, no CD is induced in the visible region. At neutral and acidic pH, where the polymer is in the β-conformation, CD is induced in the visible and near-uv regions. A pair of CD bands is located at the region around 450 nm, when the pH is around the neutrality, while it appears at the region around 500 nm at acidic pH. Thus, the optically active species of bound dye changes from dimer to monomer on lowering the pH. These species form dissymmetric arrays along a polypeptide chain. The fraction of bound dye forming dissymmetric sequences is not high, but most of bound dye is adsorbed randomly on the ionized carboxyl groups of polypeptide chain and gives rise to hypochromism only. A dissymmetric structure of dye–polymer complexes is presented, in which the polymer has the β-conformation and the dye cations, either dimeric or monomeric, bind to its side chains, in such a way that the longer axes of molecular planes of bound dye form a two-fold, right-handed helix along the extended polypeptide chain. A zeroth-order calculation of CD based on the coupled oscillator model leads to the result that each dissymmetric array of dye consists, on the average, of two dimeric or monomeric cations. This low number of bound cations in a dissymmetric array and the large fraction of randomly adsorbed dye suggest that the hydrophobic interaction of dye with the polymer is strong, so that dye cations are adsorbed sparsely on both sides of the extended polypeptide chain.  相似文献   

6.
The induced circular dichroism (CD) in the visible region of acridine orange bound to the double-stranded RNA from cytoplasmic polyhedrosis virus and to yeast tRNA has been measured as a function of RNA phosphate-to-dye ratio (P/D), under the conditions of 0.01 M Na+ at pH 7.0. The shape of the CD spectrum of acridine orange bound to the double-stranded RNA was quite different from the spectrum of the dye bound to DNA. The CD spectral features of acridine orange bound to the double-stranded regions in tRNA closely resembled those of the double-stranded RNA-dye complex, suggesting that the dyes bind similarly to the two RNA's. It was further found that the CD spectrum of the tRNA-dye complex at sufficiently high P/D ratios, which is assignable to monomeric, intercalated dye to the base-paired parts in tRNA, is also distinct from the corresponding spectrum of the DNA-dye complex.  相似文献   

7.
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange–red‐emitting antimonate‐based phosphors La3SbO7:xSm3+ (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm3+ at 568, 608, 654 and 716 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2 of Sm3+, respectively. The strongest emission was located at 608 nm due to the 4G5/26H7/2 transition of Sm3+, generating bright orange–red light. The critical quenching concentration of Sm3+ in La3SbO7:Sm3+ phosphor was determined as 10% and the energy transfer between Sm3+ was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm3+ phosphors are located in the orange–red region. The La3SbO7:Sm3+ phosphors may be potentially used as red phosphors for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Chondroitin sulfate C (CSC) and acrdiine orange (AO) formed two types of complexes at neutral pH, depending upon the order of mixing. The induced optical activity of AO was much more pronounced when the polysaccharide was added to dye than the dye to polymer (final concentration of dye was 5 × 105M). The difference in aggregation of the dye molecules is believed to be responsible for the observed peculiarities. The Cotton effects of the CSC-to-dye solution displayed a sharp inversion near 59°C. and the profile at 76°C. was almost a mirror image of that at room temperature. At pH 1.3, however, the order of mixing became unimportant, suggesting that the carboxylate on the polysaccharide way involved more intimately than were sulfates in the peculiarities of the Cotton effects.  相似文献   

9.
A procedure is described that allows the determination of the surface area of aquatic plants by dipping them in a surfactant (Liquinox) dye (acridine orange) mixture and measuring the dye retained colimetrically. The method was applied to Vallisneria sp., Elodea canadensis Michx, Potamogeton richardsonii (A. Benn.) Rydb. and Myriophyllum spicatum L. For each species good relationships (0.91 < r2 < 0.99) between computed area and dye retention capacity were found.  相似文献   

10.
T Ito  M Zama  J Amagasa 《Biopolymers》1972,11(8):1583-1592
Circular dichroism spectra of acridine orange bound to E. coli tRNA were studied at varying tRNA phosphate-to-dye (P/D) ratios for both unfractionated and purified materials in the absence of Mg++. From the rather discrete features exhibited in the circular dichroism spectra three types of interactions were observed: (1) A high P/D ratio such as 75.2 or 49.8 indicates the interaction between the nucleotide base and dye molecule. The spectra with a large positive peak at 515 mμ are, however, quite different from that of DNA–AO complex under similar conditions. (2) With an intermediate P/D ratio (26.5 to 9.6) dye molecules bound strongly to the polynucleotide chain. (3) With low P/D ratios (≤7.5) the interaction appears to be due to the stacked dye molecules in the single-stranded part of tRNA. The spectra of the third group have an isobestic point at 477 mμ. Below a P/D ratio of 4 the spectrum shows one positive and two negative bands which may be the characteristics of circular dichroism of stacked dyes in polynucleotide chain. Although no drastic change in the conformation of tRNA itself was detectable in the presence of Mg++ in the ultraviolet region, a dramatic change was observed in the circular dichroism of tRNA–acridine orange complex when Mg++ concentration was increased to 10?3M. It was inferred that certain conformational changes other than simple hydrogen bond formation occured in tRNA molecules at this high Mg++ concentration, so that the amount of bound dye in the stacking condition was increased through the transition.  相似文献   

11.
The interaction of the Trp–Sm(III) complex with herring sperm DNA (hs‐DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV‐vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp–Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)–(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K?25°C = 7.14 × 105 L·mol?1 and K?37°C = 5.28 × 104 L·mol?1, and it could displace the AO dye from the AO–DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that ΔrHm? is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs‐DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The interaction of acridine orange with dermatan and chondrotin sulfates results in the formation of complexes containing bound dye molecules ordered into dissymmetric arrays. Complexes containing an excess of available disaccharide residues compared to dye are completely soluble, and exhibit biphasic circular dichroism bands. Analysis of the dependence of the extrinsic circular dichrosim on dye aggregation indicates the presence of extended dye stacks bound to the glycosaminoglycan. Complexes formed in solutions containing an excess of dye are only partially soluble, and exhibit circular dichroism spectra having band shifts and intensity changes relative to the soluble complexes. The latter complexes show a sharp drop in induced circular dichroism with temperature, due to a cooperative change in the structure of the complex. The structural order of the dye–glycosaminoglycan complex may differ from the intrinsic structure of the glycosaminoglycan itself in dilute solution.  相似文献   

13.
The effects of salts (NaCl, LiCl, Me4NCl, AgNO3, MgCl2, CuCl2 and MnCl2) and dyes (acridine orange and methylene blue) on the low-frequency dielectric relaxation (0.1 Hz–30 kHz) of dilute aqueous solutions of DNA were investigated with varying salt or dye concentrations. Both the dielectric relaxation time τD and the rotational relaxation time τ estimated from the reduced viscosity decrease in quite parallel ways with increasing M/P (M/P being the normality ratio of cation to phosphate residue), reflecting the contraction of DNA molecule due to electrostatic shielding and cation binding. The agreement between τD and τ through the whole range of M/P supports our previous conclusion that the low-frequency relaxation of DNA arises from rotation of the molecule. The dielectric increment Δε also decreases with increasing M/P on account of both the contraction of DNA and the decrease in effective degree of dissociation of DNA. Δε as a function of M/P is interpreted in terms of a quasi-permanent dipole due to counterion fluctuation. These effects of cations are the strongest for divalent cations and rather weak for Na+, Li+, and Me4N+. Effects of dye on τD and Δε are also well explained by the rotation of DNA molecule with a quasi-permanent dipole due to counterion fluctuation on the basis of intercalation of dye at D/P < 0.2 (D/P being the molarity ratio of dye to phosphate residue) and external binding at 0.2 < D/P < 1.0.  相似文献   

14.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The absorption and fluorescence spectra of two samples of dye labeled euchrysine were found to differ. One sample, labeled GGNX, had absorption and fluorescence maxima of 435 and 515 nanometers (nm) respectively. The other sample was not further labeled, but had absorption and fluorescence maxima of 492 and 535 nm. The latter values, as well as the shape of both the fluorescence and absorption curves of the second sample were superimposable on a recrystallized sample of acridine orange labeled correctly C. I. 46905. Euchrysine has two free amino groups which are fully methylated in acridine orange, therefore a nitrous acid test can differentiate the two dyes. The sample of euchrysine labeled GGNX gave a reaction, as did acridine yellow, C. I. 46025, but acridine orange, C. I. 46005, did not. Fluorescence metachromasy of euchrysine is less efficient than that of acridine orange in two ways: the shift in the spectrum is smaller by about 40 nm, making the separation of the colors more difficult both visually and by instruments and the metachromatic fluorescence has less than half of the intensity of acridine orange as measured at the peak for each dye. Confusion between these two dyes has occurred because suppliers have used the names interchangeably. For critical studies, the dye used should be identified by its Colour Index number.  相似文献   

16.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

17.
Pope AJ  Leigh RA 《Plant physiology》1988,86(4):1315-1322
Acridine orange altered the response to anions of both ATP and in-organic pyrophosphate-dependent pH gradient formation in tonoplast vesicles isolated from oat (Avena sativa L.) roots and red beet (Beta vulgaris L.) storage tissue. When used as a fluorescent pH probe in the presence of I, ClO3, NO3, Br, or SCN, acridine orange reported lower pH gradients than either quinacrine or [14C]methylamine. Acridine orange, but not quinacrine, reduced [14C]methylamine accumulation when NO3 was present indicating that the effect was due to a real decrease in the size of the pH gradient, not a misreporting of the gradient by acridine orange. Other experiments indicated that acridine orange and NO3 increased the rate of pH gradient collapse both in tonoplast vesicles and in liposomes of phosphatidylcholine and that the effect in tonoplast vesicles was greater at 24°C than at 12°C. It is suggested that acridine orange and certain anions increase the permeability of membranes to H+, possibly because protonated acridine orange and the anions form a lipophilic ion pair within the vesicle which diffuses across the membrane thus discharging the pH gradient. The results are discussed in relation to the use of acridine orange as a pH probe. It is concluded that the recently published evidence for a NO3/H+ symport involved in the export of NO3 from the vacuole is probably an artefact caused by acridine orange.  相似文献   

18.
W C Galley 《Biopolymers》1968,6(9):1279-1296
Phosphorescence and fluorescence from the dye in complexes of DNA with 9-amino-acridine and acridine orange in a glycerol-H2O glass have been measured at 77°K. The dependence of the p/fratio for 9-aminoacridine on the exciting wavelength demonstrates triplet–triplet energy transfer from DNA to dye. The result provides evidence for π electron overlap between the dye and the bases of native DNA. The observation that the magnitude of the enhancement in ultraviolet-excited dye phosphorescence increases with the base to dye ratio indicates triplet delocalization in the polymer. Preliminary flash experiments provide evidence that this delocalization is not limited by slow diffusion of the triplet exciton. The inability to detect transfer on denaturation of the DNA illustrates the sensitivity of triplet–triplet energy transfer to the conformation of the macromolecular complex.  相似文献   

19.
We have studied the response of Escherichia coli NCTC10418 to gentamicin with flow cytometry. The susceptibility of individual bacterial cells to the antibiotic was assessed by differential staining using the metachromatic dye, acridine orange. Exponential phase cultures were exposed to the minimum bactericidal concentration of gentamicin and analysed at regular intervals over 90 min. Within 60 min of exposure to the drug, two sub-populations of organisms could be distinguished in cultures by their different acridine orange-associated fluorescence emissions of <550 nm and >550 nm. The number of bacteria exhibiting acridine orange-associated fluorescence at >550 nm corresponded to counts of colony forming units.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号