首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. N. Cheng  F. A. Bovey 《Biopolymers》1977,16(7):1465-1472
By means of carbon-13 nmr (at 25 MHz) the trans/cis conformer ratio in glycyl-L -proline has been measured in aqueous (D2O) solution over the temperature range 33–96°C. It is found that ΔH0 = ?4.2 kJ/mole and ΔS0 = ?9.7 J/mole/K. Measurements of the T1 values for the proline ring carbons yielded values consistent with a fast puckering process involving both the β- and γ-carbons. Measurements of the rate of cis-trans conformational interconversion in glycyl-L -proline, using complete line-shape analysis for the glycyl α-carbon resonance, gave values for the transcis isomerization as follows: ΔH = 83.5 ± 0.2 kJ/mole; ΔS = 0.0 ± 10 J/mole/K. A more approximate determination from coalescence temperature observations gave a value of ΔG of 82.0 ± 0.4 kJ/mole for this process in acetyl-L -proline in aqueous solution. The presence of 12M NaSCN lowered this barrier by ca. 2.6 kJ/mole. Such measurements are relevant to present theoretical models of the denaturation-renaturation processes in proteins, in which proline residues may play a key role.  相似文献   

2.
One-dimensional nmr exchange spectroscopy was carried out to determine thermodynamic parameters of cyclophilin-induced cis-trans isomerization of succinyl-Ala-Phe-Pro-Phe-p-nitroanilide. Rate measurements were possible at physiological temperatures. The kc/Km of rat cyclophilin was found to he 12.8 (±0.5) s?1 μM?1 at 37°C, intermediate to previously reported values that used a coupled enzyme assay extrapolated to this temperature. Activation energies (ΔG) for the uncatalyzed and catalyzed reaction at 37°C were found to be 19.7 and 17.1 kcal/mol, respectively, and were primarily due to an enthalpic barrier. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The antidepressant drug tetramezine [1,2‐bis‐(3,3‐dimethyldiaziridin‐1‐yl)ethane] consists of two bridged diaziridine moieties with four stereogenic nitrogen centers, which are stereolabile and, therefore, are prone to interconversion. The adjacent substituents at the nitrogen atoms of the diaziridines moieties exist only in an antiperiplanar conformation, which results in a coupled interconversion. Therefore, three stereoisomers exist (meso form and two enantiomeric forms), which epimerize when the diaziridine moieties are regarded as stereogenic units due to the coupled interconversion. Here, we have investigated the epimerization between the meso and enantiomeric forms by dynamic gas chromatography. Temperature‐dependent measurements were performed, and reaction rate constants were determined using the unified equation of chromatography implemented in the software DCXplorer. The activation barriers of the epimerization were found to be ΔG = 100.7 kJ mol?1 at 25°C and ΔG = 104.5 kJ mol?1 at 37°C, respectively. The activation enthalpy and entropy were determined to be ΔH = 70.3 ± 0.4 kJ mol?1 and ΔS = ?102 ± 2 J mol?1 K?1. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Semi-empirical energy calculations for an internal Pro-Pro dimer are presented that take into account the nature of the flexibility of the proline ring due to its puckering. Calculations show that three stable conformations are available for the dimer: the cis (ω = 0°, ψ = 160°); the trans (ω = 180°, ψ = 160°, also referred to as trans′); and the cis′ (ω = 180°, ψ = ?40°) conformations. The best conformational pathways between these stable conformations are determined. Calculations also show that the barrier for cis′–trans′ conversion is of the same order of magnitude as that for cistrans conversion.  相似文献   

5.
The collagen-like peptides (L -Pro-L -Pro-Gly)n and (L -Pro-L -Hyp-Gly)n with n = 5 and 10, were examined in terms of their triple helix ? coil transitions in aqueous and nonaqueous solvents. The peptides were soluble in 1,2-propanediol containing 3% acetic acid and they were found to form triple-helical structures in this solvent system. The water content of the solvent system and the amount of water bound to the peptides were assayed by equilibrating the solvent with molecular sieves and carrying out Karl Fischer titrations on the solvent phase. After the solvent was dehydrated, much less than one molecule of water per tripeptide unit was bound to the peptides. Since the peptides remained in a triple-helical conformation, the results indicated that water was not an essential component of the triple-helical structure. Comparison of peptides with the same chain length demonstrated that the presence of hydroxyproline increased the thermal stability of the triple helix even under anhydrous conditions. The results, therefore, did not support recent hypotheses that hydroxyproline stabilizes the triple helix of collagen and collagen-like peptides by a specific interaction with water molecules. Analysis of the thermal transition curves in several solvent systems showed that although the peptides containing hydroxyproline had tm values which were 18.6° to 32.7°C higher, the effect of hydroxyproline on ΔG was only 0.1 to 0.3 kcal per tripeptide unit at 25°C. The results suggested, therefore, that the influence of hydroxyproline on helical stability may be explained by intrinsic effects such as dipole–dipole interactions or by changes in the solvation of the peptides by alcohol, acetic acid, and water. A direct calorimetric measurement of the transition enthalpy for (L -Pro-L -Pro-Gly)n in 3% or 10% acetic acid gave a value of ?1.84 kcal per tripeptide unit for the coil-to-helix transition. From the value for enthalpy and from data on the effects of different chain lengths on the thermal transition, it was calculated that the apparent free energy for nucleation was +5 kcal/mol at 25°C (apparent nucleation parameter = 2 × 10?4 M?2). The value was dependent on solvent and on chemical modification of end groups.  相似文献   

6.
Rate parameters have been obtained for the oxidation of cuprous stellacyanin by cobalt(III) ions of the form cis(N)-[CoN2O4]?, including cis(N)-[Co(NTA)(gly)]?, cis(N)-[Co(IDA)2]?, [Co(en)(ox)2]?(μ 0.5 M(phosphate), pH 7.0), and Co(EDTA)?(μ 0.1 M(NaCl), pH 7.2, 0.001 M phosphate). An excellent isokinetic correlation between the activation parameters ΔH and ΔS exists for the reactions of aminopolycarboxylatocobalt(III) ions with reduced stellacyanin (β = 300 ± 12 K; correlation coefficient = 0.995). It is concluded that enthalpy-entropy compensation in these reactions may be understood in terms of differing orientations preferred by the various oxidants in forming precursor complexes with the reduced blue protein. While ΔH and ΔS values for electron transfer from stellacyanin to cis(N)-[CoN2O4]? ions vary over ranges of 10.7 kcal/mol and 34 cal/mol-deg, respectively, room temperature rate constants are relatively constant (3.6–34.5 M?1 sec?1), as expected from Marcus theory for outer sphere electron transfer.  相似文献   

7.
Combinations of L - and D -proline residues are useful compounds for finding new structures and properties of cyclic peptides. This is demonstrated with one striking example, the cyclic tetrapeptide c(D -Pro-L -Pro-D -Pro-L -Pro). For this molecule composed of strictly alternating D - and L -configurated residues, a highly symmetrical structure is expected, which should be an optically inactive meso-form. Cyclization of the enantiomeric pure linear precursor D -Pro-L -Pro-D -Pro-L -Pro, however, yields a racemic mixture of two enantiomeric cyclotetrapeptides, both with twofold symmetry and a cistranscistrans sequence of the peptide bonds. Remarkably, this formation of a racemate was not caused by racemization, but by cis/trans isomerization of all peptide bonds in the ring. This process may occur in the linear precursor during the ring formation (cyclization of conformers with transcistrans or cistranscis arrangement of the amide bonds) as well as in the enantiomeric pure cyclic tetrapeptide at higher temperature. In the latter case, an all-cis structure should exist as the intermediate, which can form a cistranscistrans sequence in two equivalent ways, leading finally to two enantiomeric cyclotetrapeptides. In the first one, the cis peptide bonds are attributed to the L -residues and the trans peptide bonds to the D -residues; in the second one, the cis bonds belong to the D and the trans bonds to the L -residues. The mixture of these two enantiomers does not crystallize in the racemic form, but in enantiomeric pure separate crystals. The structural properties could be proved by 1H- and 13C-nmr spectroscopy and x-ray analysis. The cis/trans isomerization process was confirmed by optical rotation measurements and CD spectroscopy, as well as DREIDING model studies. Calorimetric measurements in the solid state suggest the existence of the expected all-cis intermediate. The backbone conformation of the 12-membered medium-sized ring shows only slight deviations—up to 6° —from the planarity of the peptide bonds. On the other hand, the four pyrrolidine rings show different types of puckering of the Cγ or the Cβ atoms.  相似文献   

8.
The monofunctional and bifunctional bindings of the potential anticancer drug trans-isopropylaminedimethylaminedichloroplatinum (trans-IPADMADP) and its cis isomer to purine base in DNA are explored by using density functional theory and IEF-PCM solvation models. The computed lowest free energy barrier in the aqueous solution is 14.0/11.6 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for guanine(G), and 11.7/13.3 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for adenine(A). Our calculations demonstrate that the trans reactant complexes (or isolated reactants) can generate trans- or cis-monoadducts via similar trigonal bipyramidal transition state structures, suggesting that the monoadducts can subsequently close to form the bifunctional intrastrand Pt-DNA adducts and simultaneously distort DNA in the similar way as cisplatin. Our calculations show that Pt(isopropylamine)(dimethylamine)G22+ head-to-head path has the lowest free energy of activation at 17.6 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-head path at 19.6 kcal/mol when the monofunctional cis-Pt-G complex serves as the reactant; while the Pt(isopropylamine)(dimethylamine)G22+ head-to-tail adduct has the lowest barrier of 20.5 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-tail adduct at 23.0 kcal/mol if the monofunctional trans-Pt-G complex is the reactant.The calculated relatively lower activation energy barrier than that of cisplatin theoretically confirm that trans-[PtCl2(isopropylamine)(dimethylamine)] is a potential anticancer drug as described by experiment.  相似文献   

9.
pKa1 values of 3-methoxy-N-desmethyldiazepam in acetonitrile and methanol containing various acid concentrations were determined by spectrophotometry to be 3.5 and 1.3, respectively. Temperature-dependent racemization of enantiomeric 3-methoxy-N-desmethyldiazepam in methanol containing 0.5 M H2SO4 was studied by circular dichroism spectropolorimetry and the racemization reactions were found to follow apparent first-order kinetics. Thermodynamic parameters of the racemization reaction were found to be: Eact = 18.8 kcal/mol, and at 25°C: ΔH? = 18.3 kcal/mol, ΔS? = ?14.8 entropy unit, and ΔG? = 22.7 kcal/mol, respectively. The racemization had an isotope effect (kH/kD) of 1.6 at 42°C. Based on the results of this report and those of earlier reports by other investigators, a nucleophilically solvated C3 carbocation intermediate resulting from either a P (plus) or an M (minus) conformation is proposed to be an intermediate and responsible for the stereoselective nucleophilic substitution and the subsequent racemization of 3-methoxy-N-desmethyldiazepam enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The crystal structure of N-acetyl-L -4-hydroxyproline (Hyp) was determined by direct methods. (The crystal is orthorhombic with the space group P212121.) The acetyl group is in the trans conformation and the pyrrolidine ring puckers at Cγ (CsCγ envelope), as in most Hyp residues. According to the rotation angle ψ = ?30°, the N-acetyl-L -4Hyp has the same conformation as an α-helix of prolyl residues. The crystal packing is stabilized by hydrogen bonds between three different molecules and the same molecule of water. One of the water bridges involves the carbonyl of the N-acetyl group of one molecule and the hydrogen atom of the 4-OH group of another. Such an arrangement has been proposed to explain the high stability of (Gly-L -Pro-L -4Hyp)n. A second bridge involves the two hydrogens of the water molecule and the carbonyl groups of two neighbouring molecules, as already proposed in a dihydrated model of collagen. These experimental features, which are discussed in relation to the different models of collagen, allow us to propose an hypothetical arrangement for the water molecule which is strongly retained in the triple helix of (Gly-L -Pro-L -4Hyp)n.  相似文献   

11.
The conversion of pyrimidin-2(1H)-one into pyrimidin-2-ol through direct and indirect mechanisms was investigated in the gas phase and solution media at the B3LYP/6-311++G** level of theory. The kinetic parameters demonstrate that the barrier energy ΔG of the tautomeric conversion when proton transfer is mediated by one water molecule is almost the same as when is mediated by two water molecules, and is smaller than that when is mediated by three water molecules (14.0 and 17.1?kcal/mol at 298?K, respectively). It is obvious that the indirect mechanism, which is occurred in the presence of solvent molecules, is kinetically favourable in the gas phase and aqueous media. In addition, the decrease in the ΔG values by the electron donor substituents located at the meta and para positions of pyrimidin-2(1H)-one is larger than those by the electron-withdrawing substituents.  相似文献   

12.
We have measured the thermodynamic parameters of the slow-fast tail-fiber reorientation transition on T2L bateriophage. Proportions of the virus in each form were determined from peak-height measurements in sedimention-velocity runs and from average diffusion coefficients obtained by quasielastic laser light scattering. Computer simulation of sedimentation confirmed that there were no undetected intermediates in the transition, which was analyzed as a two-state process. Van't Hoff-type plots of the apparent equilibrium constant and of the pH midpoint of the transition as function of reciprocal temperature led to the following estimates of the thermodynamic parameters for the transition at pH 6.0 and 20°C: ΔH° = ?139 ± 18Kcal mol?1, ΔS° = ?247 ± 46 cal K?1 mol?1, and ΔG° = ?66 ± 22 kcal mol?1. Per mole of protons taken up in the transition, the analogous quantities were ?15.9 ± 1.7 kcal mol?1, ?26.3 ± 2.2 cal K?1 mol?1, and ?8.22 ± 1.8 kcal mol?1. The net number of protons taken up was about 8.5 ± 1.5. The large values of the thermodynamic functions are consistent with a highly cooperative reaction and with multiple interactions between the fibres and the remainder of the phage. The negative entropy of the transition is probably due to immobilization of the fibres.  相似文献   

13.
Rotating disk voltammetry was used in this work to study the rates of reaction of ferricytochrome c with two very strong reductants, methyl and benzyl viologen. The rates of reaction for these reductants were found to be 4.0 × 107 and 5.4 × 107m?1s?1 at 24°C for benzyl and methyl viologen, respectively. The versatility of this method was demonstrated by the ease with which the activation parameters were obtained. The ΔH and ΔS were found to be 4.0 kcal/mol and ?10.6 cal/mol-K, respectively, for benzyl viologen. All the observed reaction rates were corrected for coulombic effects by the method of Wherland and Gray, and the electrostatically corrected rate constants were compared with the Marcus and Hopfield theories for electron transfer. The agreement was excellent for the tunneling theory but there were some discrepancies with the absolute Marcus theory. The relative Marcus approach worked quite well and, by taking into account the nonadiabaticity of the electron transfer, reasonable values were obtained for the absolute Marcus theory when realistic values of the self-exchange constants were used.  相似文献   

14.
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG (activation free energy) and ΔGE‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔGES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS value implied that the immobilized form of the enzyme was more ordered than its free form.  相似文献   

15.
Steady-state inhibitory kinetic studies on almond β-glucosidase-catalyzed reactions were done to elucidate the binding subsite of several monosaccharides on this enzyme.

Glucono-1,5-Iactone (a transition-state analog), glucose, 2-deoxy glucose, fucose, and methyl α-glucoside showed mixed-type inhibition, but galactose, galactosamine, mannose, N-acetyl glucosamine, and glucosamine showed pure competitive inhibition on the hydrolysis of P-nitrophenyl β-glucoside.

These results are reasonably accounted for by assuming that the former monosaccharides (the mixed type inhibitors) bind to subsite 1 (the nonreducing-end side subsite to which the nonreducing-end glucose residue of a substrate binds in a productive binding mode), and that the latter (the competitive inhibitors) bind to subsite 2, the adjacent subsite to subsite 1.

The binding affinity ( — ΔG°) of glucono-1,5-lactone (— ΔG° = 6.7 kcal mol 1 at pH 5.0, 25°C) was significantly greater than those of the others (0.3 ~ 1.6 kcal mol-1).  相似文献   

16.
The observed equilibrium constants (Kobs) for the reactions of d-2-phosphoglycerate phosphatase, d-2-Phosphoglycerate3? + H2O → d-glycerate? + HPO42?; d-glycerate dehydrogenase (EC 1.1.1.29), d-Glycerate? + NAD+ → NADH + hydroxypyruvate? + H+; and l-serine:pyruvate aminotransferase (EC 2.6.1.51), Hydroxypyruvate? + l-H · alanine± → pyruvate? + l-H · serine±; have been determined, directly and indirectly, at 38 °C and under conditions of physiological ionic strength (0.25 m) and physiological ranges of pH and magnesium concentrations. From these observed constants and the acid dissociation and metal-binding constants of the substrates, an ionic equilibrium constant (K) also has been calculated for each reaction. The value of K for the d-2-phosphoglycerate phosphatase reaction is 4.00 × 103m [ΔG0 = ?21.4 kJ/mol (?5.12 kcal/mol)]([H20] = 1). Values of Kobs for this reaction at 38 °C, [K+] = 0.2 m, I = 0.25 M, and pH 7.0 include 3.39 × 103m (free [Mg2+] = 0), 3.23 × 103m (free [Mg2+] = 10?3m), and 2.32 × 103m (free [Mg2+] = 10?2m). The value of K for the d-glycerate dehydrogenase reaction has been determined to be 4.36 ± 0.13 × 10?13m (38 °C, I = 0.25 M) [ΔG0 = 73.6 kJ/mol (17.6 kcal/mol)]. This constant is relatively insensitive to free magnesium concentrations but is affected by changes in temperature [ΔH0 = 46.9 kJ/mol (11.2 kcal/mol)]. The value of K for the serine:pyruvate aminotransferase reaction is 5.41 ± 0.11 [ΔG0 = ?4.37 kJ/mol (?1.04 kcal/mol)] at 38 °C (I = 0.25 M) and shows a small temperature effect [ΔH0 = 16.3 kJ/ mol (3.9 kcal/mol)]. The constant showed no significant effect of ionic strength (0.06–1.0 m) and a response to the hydrogen ion concentration only above pH 8.5. The value of Kobs is 5.50 ± 0.11 at pH 7.0 (38 °C, [K+] = 0.2 m, [Mg2+] = 0, I = 0.25 M). The results have also allowed the value of K for the d-glycerate kinase reaction (EC 2.7.1.31), d-Glycerate? + ATP4? → d-2-phosphoglycerate3? + ADP3? + H+, to be calculated to be 32.5 m (38 °C, I = 0.25 M). Values for Kobs for this reaction under these conditions and at pH 7.0 include 236 (free [Mg2+] = 0) and 50.8 (free [Mg2+] = 10?3m).  相似文献   

17.
Cyclic hexapeptides of the type cyclo(L -Xxx-L -Pro-D -Yyy)2 or cyclo(L -Xxx-L -Pro-Gly)2 exist in solution predominantly in two forms of C2 average symmetry, one with all-trans peptide bonds and generally well-established conformation, and another with both Xxx-Pro peptide bonds cis. We have been measuring the thermodynamic parameters of this equilibrium using carbon and proton nmr spectroscopy. Data have been obtained for peptides in which Yyy = Gly, D -Ala, or D -Phe, and Xxx = Gly, L -Ala, L -Leu, and L -Val. In a given solvent, stability of the all-trans form decreases (ΔG0 increases) as Xxx is changed through the series Gly, L -Ala-, L -Leu, and L -Val, consistent with expected increasing repulsion between the Xxx side chain and the proline δ methylene across the trnas Xxx-Pro bond. Also, for a given set of side chains, the stability of the all-trnas form increases as the polarity of the solvent decreases, consistent with models in which all C?O and N? H groups are accessible for solvation in the two-cis form, but two C?O and two N? H groups are somewhat sequestered in the all-trans form. With the available data it is not possible to identify pure intramolecular (solvent-independent) or pure peptide-bond solvation (side chain-independent) terms in ΔH° or ΔS°, although trends are discernible.  相似文献   

18.
T W Sturgill 《Biopolymers》1978,17(7):1793-1810
A self-consistent thermodynamic characterization of the binding of ethidium to yeast phenylalanine-specific tRNA at 25°C, pH 7.0, in 11 nM MgCl2, 375 nM NaCl, and 25 mM sodium phosphate has been obtained. Two ethidium molecules bind per tRNA under these conditions. The stronger site has a dissociation constant equal to 1.9 ± 0.5 μM and ΔHdis°′ = 12 ± 1 Kcal/mol, and the weaker sites has a dissociation constant equal to 24 ± 9 μM and ΔHdis°′ = 8.9 ± 1.5 Kcal/mol. The average calorimetric ΔHdis°′ for the to sites 10.6 ± 0.4 kcal/mol. The thermodynamics of binding to the stranger sites are most probably the thermodynamics of interaction between A·U (6) and A·U (7), the unique site identified by Jones and Kearns. The binding is enthalpically driven and classical hydrophobic interactions do not appear to be important in the binding reaction.  相似文献   

19.
Y C Fu  H V Wart  H A Scheraga 《Biopolymers》1976,15(9):1795-1813
The enthalpy change associated with the isothermal pH-induced uncharged coil-to-helix transition ΔHh° in poly(L -ornithine) in 0.1 N KCl has been determnined calorimetrically to be ?1530 ± 210 and ?1270 ± 530 cal/mol at 10° and 25°C, respectively. Titration data provided information about the state of charge of the polymer in the calorimetric experiments, and optical rotatory dispersion data about its conformation. In order to compute ΔHh°, the observed calorimetric heat was corrected for the heat of breaking the sample cell, the heat of dilution of HCl, the heat of neutralization of the OH? ion, and the heat of ionization of the δ-amino group in the random coil. The latter was obtained from similar calorimetric measurements on poly(D ,L -ornithine). Since it was discovered that poly(L -ornithine) undergoes chain cleavage at high pH, the calorimetric measurements were carried out under conditions where no degradation occurred. From the thermally induced uncharged helix–coil transition curve for poly(L -ornithine) at pH 11.68 in 0.1 N KCl in the 0°–40°C region, the transition temperature Ttr and the quantity (?θh/?T)Ttr have been obtained. From these values, together with the measured values of ΔHh°, the changes in the standard free energy ΔGh° and entropy ΔGh°, associated with the uncharged coil-to-helix transition at 10°C have been calculated to be ?33 cal/mol and ?5.3 cal/mol deg, respectively. The value of the Zimm–Bragg helix–coil stability constant σ has been calculated to be 1.4 × 10?2 and the value of s calculated to be 1.06 at 10°C, and between 0.60 and 0.92 at 25°C.  相似文献   

20.
The present study deals with the kinetics and thermodynamics of the uptake of75Se-labeled SeO 3 2? from incubation media to lymphocytes cultivated from eight normal individuals (14–55 years of age, two females). The uptake of SeO 3 2? was evaluated on the assumption of pseudo-first-order kinetics with regard to a reacting cellular receptor pool. On the basis of the experimental observations, it was assumed that the suggested pool of receptor molecules-symbolically represented by “£H4”—reacts with SeO 3 2? in the hypothetical reaction: $$\pounds H_4 + SeO_3^{2 - } + 2H^ + \underset{{ - k_1 }}{\overset{{k_1 }}{\longleftrightarrow}}\pounds Se + 3H_2 O$$ The mean value of the change in standard free energy at 25°C was calculated to be ΔG o=?141.6±1.3 kJ/mol, while the corresponding mean value of the free energy of activation at 25°C was calculated to be ΔG 2+=?7.8±0.9 kJ/mol for the forward reaction. The calculated values of the corresponding individual changes in the respective standard enthalpies and entropies were mutually interdependent for all eight donors. ΔH o=?152+315ΔS o(kJ/mol) corresponding to the common value ΔG o??152 kJ/mol at 315°K. These mutual interdependencies are possibly the effect of variable conformational states (e.g., the macromolecular compactness) of the cellular receptor pools. This suggestion may furthermore be supported by the correlation traced between ΔH o vs the biological age in years of the donors: △H °?76.7?1.0 (age)kJ/mol (r = ?0.92) The calculated values of activation enthalpy ΔH 2+ kJ/mol and activation entropy ΔS 2+ (kJ/mol K) also mutually correlated linearly (r=0.998); the regression line was: △H 2+ = ?8.9 + 305△S2+ (kJ/mol) corresponding to the common value △H 2+ △ ?8.9 (kJ/mol) at 305°K Similarly the activation enthalpy ΔH 2+ vs the biological age in years correlated linearly: ΔH 2+=67.4?0.73(age) (kJ/mol) (r=?0.76) The range of ΔH 2+ studied was from 13.8 to 53.9 kJ/mol with a linearly corresponding range in ΔS 2+ from 73 to 205 J/mol K. The thermodynamic data reveal the selenite uptake during the hypothetical standard reaction to be exergonic and endothermic. Critical pH dependencies of the selenite uptake were explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号