首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified dynamic method is introduced to determine the oxygen transfer coefficient, KL a, in aerobic fermentation systems which are not mechanically agitated. The dissolved oxygen concentration is measured continuously following a step down or a step up in aeration rate. The response curve is analyzed to obtain the value of KLa Experiments were carried out at several different air flow rates using mixed culture in concurrent tower fermentors with motionless mixers. The effect of sieve trays and Koch motionless mixers on oxygen transfer was investigated using a 3 in. diameter column. The values of KL aobtained at the bottom of each column were found to be higher than those obtained at the top. Comparison of the results showed that the values ofKL a were higher when the Koch mixers were used than when the sieve trays were employed. The oxygen uptake rate by the organisms rX, is also calculated by using the KL a values obtained. They compare favorably withthe experimentally measured values.  相似文献   

2.
A new method has been developed for the measurement of overall volumetric mass transfer coefficient (KL a) in gas-liquid-solid systems. This method is based on the examination of gas phase dynamics in a three-phase contactor and consists of measuring continuously the response of the outlet gas composition to a step input change of CO2 in the inlet gas stream. The advantages and limitations of the new method are presented and its sensitivity is discussed on the basis of model predictions. Preliminary results on the implementation of the CO2 method are also reported. Experimental data obtained in a nonviscous electrolyte solution show that the proposed method compares favorably with the conventional dissolved oxygen technique, provided that a correction is made to take account of the difference in diffusivity of oxygen and carbon dioxide.  相似文献   

3.
Oxygen transfer in Streptomyces fermentation broths   总被引:1,自引:0,他引:1  
The oxygen transfer coefficient has been investigated in S. noursci and S. lavendulae fermentation broths obtained from fermentors of different operating volumes (61., 30001., 20,0001.). Fermentors had KLas values ranging from 1.0 to 17.0 min?1, calculated from sulphite oxidation rates. The dynamic measurement of the volumetric oxygen transfer coefficient. (KLa) has been performed in the different fermenting systems. As the fermentation progressed, especially in the first stages, KLa values have decreased in both fermentations and in each system of fermentors. In order to characterise the whole fermenting system an average KLas was calculated from the obtained KLa values. The average KLa grew with increasing KLas values and ranged from 0.03 to 3.72 min?l. Some factors possibly having an influence on the, change of KLa have been studied. The oxygen transfer coefficients of the broths have been measured in falling films and ranged from 0.05 to 0.4 cm min?1. The flow conditions have been characterized by Reynolds numbers of broths varying between 1.0 and 60.0. The average thickness of the falling films have been measured and plotted against Reynolds number. The Re+ which is the breaking-point of the plot increased as the fermentation proceeded. In the region of Re+ the values of the oxygen transfer coefficient increased rapidly. An approximate correlation could be established between the Re+ and the physical properties of fermentation broth.  相似文献   

4.
The overall oxygen mass transfer coefficient (KLa) is often used as scale-up factor of fermentation systems. In fermenter scale-up, it is desired to achieve the same KLa values at the larger scale than the one that was obtained at a smaller scale during the development stage. It is therefore important to be able to measure KLa in situ during fermentation and to also determine the action to be taken to maintain its value at its design set point. These objectives can be obtained by measuring KLa using the dynamic method and enhancing the KLa information by immediately conducting a series of changes in agitation speed and/or aeration rate to determine the influence of these variables on KLa. This enhanced dynamic method is demonstrated with two filamentous microorganisms: Trichoderma reesei for the production of cellulase and Aspergillus niger for the production of citric acid. Two different types of bioreactor were used: a reciprocating plate bioreactor and a stirred (Rushton) bioreactor. It is shown that the proposed method can provide a simple way to measure the local variation of KLa and to adjust its value to its set point during the course of fermentation.  相似文献   

5.
The oxygen mass transfer is a critical design parameter for most bioreactors. It can be described and analyzed by means of the volumetric mass transfer coefficient K L a. This coefficient is affected by many factors such as geometrical and operational characteristics of the vessels, type, media composition, rheology and microorganism’s morphology and concentration. In this study, we aim to develop and characterize a new culture system based on the surface aeration of a flexible, single-used bioreactor fixed on a vibrating table. In this context, the K L a was evaluated using a large domain of operating variables such as vibration frequency of the table, overpressure inside the pouch and viscosity of the liquid. A novel method for K L a determination based on the equilibrium state between oxygen uptake rate and oxygen transfer rate of the system at given conditions was also developed using resting cells of baker’s fresh yeast with a measured oxygen uptake rate of 21 mg g−1 h−1 (at 30°C). The effect of the vibration frequency on the oxygen transfer performance was studied for frequencies ranging from 15 to 30 Hz, and a maximal K L a of 80 h−1 was recorded at 30 Hz. A rheological study of the medium added with carboxymethylcellulose at different concentrations and the effect of the liquid viscosity on K L a were determined. Finally, the mixing time of the system was also measured using the pH method.  相似文献   

6.
The effect of dispersed n -dodecane or n -hexadecane on the air-to-aqueous phase overall volumetric oxygen transfer coefficient in a simulated (cell-free) stirred-tank fermentor is described. The oil volume fraction ranged from zero to 0.10; the ionic strength of the aqueous phases was varied from 0 to 0.45. The air-to-aqueous phase coefficients in both oil-free (KLa) and oil-bearing (KLa*) systems were evaluated from unsteady-state experiments using a membrane-covered probe to follow the aqueous phase dissolved oxygen tension. For all systems studied, KLa*/KLa was found to be independent of P/V and vs for all practical purposes. However, for a particular aqueous phase and at a given P/V and vs, the ratio KLa*KLa generally differed from unity. Depending on the combination of hydrocarbon type and volume fraction and the aqueous-phase ionic strength employed, the dispersed hydrocarbon may, in some cases, reduce the rate of oxygen transfer and in others enhance it relative to that of the corresponding oil-free gas–liquid dispersion. Enhancement of the air-to-aqueous transfer rate by such negative spreading coefficient hydrocarbons has not been reported previously.  相似文献   

7.
The dynamic oxygen electrode method for measuring KL a requires the use of a dynamic process model. Six models from the literature are described and compared with respect to their accuracy and ease of use. It is shown theoretically that for sufficient accuracy KL a should be less than the inverse electrode response time. Experimental measurements demonstrate their application to viscous and nonviscous systems. The liquid diffusion film is shown to cause an important measurement lag that can be accounted for by a first-order time delay. Investigation on the influence of the experimental starting conditions show the importance of the gas and hold-up dynamics. A new method is proposed to simplify the KL a calculation and to eliminate errors caused by starting conditions. This method, which accounts for gas, film, and electrode dynamical effects, requires only a simple semilog plot of the response data.  相似文献   

8.
A comprehensive, simple, neural network model was constructed to replace the common semi-empirical mathematical models used for predicting individual O2 absorption coefficients (K L a) within Erlenmeyer and Hinton shake-flasks. Different factors that influence K L a within shake-flasks, such as flask dimensions, working volumes, baffle-heights, and shaking speeds, were investigated and the experimental results employed to deduce the mathematical model for each type of shake-flask. Meanwhile, the K L a values calculated from the mathematical models were used to derive a non-linear neural network estimator (NNE). The NNE for K L a prediction was implemented to evaluate the O2 absorption effect within the flasks and gave a promising result.  相似文献   

9.
The primary consideration in fermentor design is the supply of oxygen to the growing microorganisms. The oxygen-transfer characteristics of a two-stage splitcylinder airlift tower were compared to those of a similar single-stage airlift tower of equal liquid volume using a sodium sulfite–air system. At superficial gas velocities, from 720 to 1200 cm/min, no difference in KLa was apparent. The KLa was significantly larger in the two-stage tower for a gas velocity between 1200 and 2728 cm/min. At 2728 cm/min a KLa of 25.2 min?1 was achieved in the two-stage system, and at 2262 cm/min the two-stage tower had a 54% larger KLa than the single stage. A comparison of dispersion-volume based KLa showed a 27% larger value at a gas velocity of 2262 cm/min. The performance ratios for the two-stage tower were larger than those for the single-stage tower at oxygen-transfer rates greater than 180 mmol/liter hr. A comparison of the data with literature values is presented.  相似文献   

10.
Because the interior scale of turbulence in reinforced bioreactors is essentially greater than the particles of bacteria or yeasts, the mass transfer occurs at the particles only in consequence of the molecular diffusion and depends on the concentration of the soluted material only. As a decided criterion for the transmission of scale in such processes is considered the volumetric oxygen transfer coefficient KLa This article practises a theoretical analysis of the characteristic hydrodynamic conditions in bubble columns and in agitators: the content of gas, the specific area of mass transfer and the coefficient of mass transfer KL. These conditions are joined with the evaluation of the KLa value. Resultant the data of calculation hence it follows a computational determination of the KLa value by means of the physical matter values, the construction of devises and the process conditions.  相似文献   

11.
The time delay of oxygen probe response to the signal from a fermenter makes identification of the volumetric oxygen transfer coefficient kLa by the dynamic method more complicated. A coupled model involving the transient-state oxygen balance of the fermenter together with the dynamic model of the oxygen probe must be then formulated, solved and identified. In this paper two simple models of air-lift loop fermenters have been proposed and a coupled mathematical model of the fermenter – oxygen probe system has been developed. The identification procedure was used to estimate kLa values in the fermenter with internal circulation flow on the basis of experimental measurements. A comparison of evaluated and experimental indications of the probes placed at various heights of the column proves that the model presented gives a possibility of the first-step approximation of kLa in loop fermenters.  相似文献   

12.
A new correlation is given for the prediction of the volumetric coefficient for mass transfer (KLa) in stirred tanks from dispersed gas bubbles to basal salt solutions of ionic strengths representative of fermentation media. The correlation includes the effects of both the operating parameters (agitation power per unit volume and gas superficial velocity) and the physicochemical properties of the system: interfacial tension, viscosity, density, diffusion, coefficient and, in particular, ionic strength. The effect of the latter was found to be most significant in the Newtonian systems of water-like viscosity investigated; no previous correlations have included the effect of ionic strength. KLa values were determined by using a dissolved oxygen probe to monitor the steady-state oxygen tension in continuous flow experiments, and/or the rate of change of oxygen tension in unsteady-state semibatch experiments. In the latter cases, results were computed by a nonlinear, least squares computer program which fitted the experimental data to a model of probe transient response characteristics. The general applicability of the model and the computational procedure was verified by comparing the results to those obtained with the same electrolyte solution in the steady-state mode. The experiments were run over a wide range of agitation power inputs, including those typical of both soluble- and insoluble-substrate fermentations. The correlation appears to be valid for both oxygen mass transfer with and without homogeneous chemical reaction in the liquid phase; in the former case, for example, sulfite oxidation, knowledge of the chemical reaction enhancement factor is required. In addition to predicting oxygen transfer capabilities, the correlation may be used for other sparingly soluble gases of interest in fermentation systems, such as methane, hydrogen, and carbon dioxide.  相似文献   

13.
When investigating the effect of aeration capacityK L a of a cultivation device on the cell cycle of daughter cells ofCandida utilis it was found that the length of a phase (S + G2) of the cell cycle is influenced by the rate of oxygen transfer. An increase ofK L a, of a cultivation device achieved by increasing the specific output of mechanical energy for air dispersion and mixing may lead to cell damage and to changes in the cell cycle. The effect of high intensity of aeration and mixing is thus invalidated.  相似文献   

14.
An approach to modify external loop airlift bioreactor is presented that examines its performance with respect to mass transfer. There are various designs of airlift fermenter [1]. In the proposed system [2] the riser has been replaced by a tube of irregular geometry, in the form of converging-diverging sections (CDT-ALF), so that better mass transfer may be obtained due to better liquid mixing caused by the bubble flow, pulsation effect and early transition to turbulence. Mass transfer characteristics of the modified airlift fermenter CDT-ALF were studied and compared with those of a conventional one, UT-ALF. Overall volumetric mass transfer coefficient,K L a, was determined by sulfite oxidation method.K L a was determined with respect toU G for differenth i. HigherK L a was always observed in CDT-ALF compared to that in UT-ALF under any operating condition ofh i andU G. If theK L a values are compared in both the systems under their optimum conditions ofh i andU G, CDT-ALF showed 122.5% higher values ofK L a compared to UT-ALF. However, when both the systems were operated at the lowest experimental conditions ofU G, thek L a in CDT-ALF was found to be 170% higher. In UT-ALF while with the decrease ofU G,k L a decreased, in CDT-ALF the reverse was observed i.e. at lowU G,K L a was higher. However with the increase ofh i,K L a decreased in both the systems. To predict volumetric mass transfer coefficientK L a, empirical correlations were developed by dimensional analysis for both the reactors. The correlations were experimentally verified to determine their reliability to predict mass transfer coefficient and the deviation was found within reasonable limit.List of abbreviations ALF Airlift Fermenter - UT-ALF Uniform Tube Airlift Fermenter - CDT-ALF Converging-diverging Tube Airlift Fermenter  相似文献   

15.
Optimization of a bioreactor design can be an especially challenging process. For instance, testing different bioreactor vessel geometries and different impeller and sparger types, locations, and dimensions can lead to an exceedingly large number of configurations and necessary experiments. Computational fluid dynamics (CFD), therefore, has been widely used to model multiphase flow in stirred-tank bioreactors to minimize the number of optimization experiments. In this study, a multiphase CFD model with population balance equations are used to model gas–liquid mixing, as well as gas bubble distribution, in a 50 L single-use bioreactor vessel. The vessel is the larger chamber in an early prototype of a multichamber bioreactor for mammalian cell culture. The model results are validated with oxygen mass transfer coefficient (kLa) measurements within the prototype. The validated model is projected to predict the effect of using ring or pipe spargers of different sizes and the effect of varying the impeller diameter on kLa. The simulations show that ring spargers result in a superior kLa compared to pipe spargers, with an optimum sparger-to-impeller diameter ratio of 0.8. In addition, larger impellers are shown to improve kLa. A correlation of kLa is presented as a function of both the reactor geometry (i.e., sparger-to-impeller diameter ratio and impeller-to-vessel diameter ratio) and operating conditions (i.e., Reynolds number and gas flow rate). The resulting correlation can be used to predict kLa in a bioreactor and to optimize its design, geometry, and operating conditions.  相似文献   

16.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

17.
A new method was developed for estimating the volumetric oxygen transfer coefficient, kLa, in a fermentor. Various methods were investigated for the on-line estimation of kLa with an analog computer employing a steepest-descent calculation technique. The method by which kLa is estimated (by minimizing the error residue of the model) was found to be very applicable. A method for the simultaneous estimation of the volumetric oxygen transfer coefficient and respiration rate in biological systems is also presented.  相似文献   

18.
In various aerobic bioreactors including activated sludge aeration tanks, the volumetric mass transfer coefficient KLa is frequently used as an estimate of the rate of oxygen dissolution into the liquid phase. The KLa measurement in such bioreactors is widely applied with the aid of sodium sulfite (Na2SO3) as an oxygen-consuming substance used to maintain low dissolved oxygen concentration. In the present study, the effect of the addition of Na2SO3 on KLa, determined by an off-gas analysis, was investigated specifically from the viewpoint of variations in the size of air bubbles and the enhancement factor associated with the change in sulfite concentration. Experiments were conducted in a draft-tube bubble column, using a zirconia electrode oxygen analyzer for measurement of the O2 mole fraction in the exhaust gas and a dual electrical resistivity probe for measurement of the bubble size. It was found that the increase in the specific gas-liquid interfacial area, resulting from bubble size reduction effected by Na2SO3 functioning as an electrolyte, is more pronounced than the enhancement of the absorption rate through the interface. The upper limit of Na2SO3 concentration for sustaining physical absorption, in the absence of any catalyst, ranges from 30 to 70 mol/m3, while that for preventing the average bubble size from decreasing is about 15 mol/m3. Furthermore, to secure a reliable KLa measurement, the KLa value should not exceed 50 h−1 for the liquid depth of 3 m even when the limiting conditions are not exceeded. The off-gas analysis proposed in this study for KLa determination is expected to be extremely useful provided that the above conditions are fulfilled, since it only requires moderate addition of the sulfite as the oxygen-consuming substance and will not interrupt the reactor operation as long as oxygen uptake occurs in the system.  相似文献   

19.
Measurement of oxygen transfer into a pseudoplastic solution of agrobacteran yielded the correlationK L aRe 1.013 (100Re 600). A possible method of estimation of changes inK L a, in dependence on agrobacteran concentration is presented.  相似文献   

20.

Miniaturized bubble columns (MBCs) have different hydrodynamics in comparison with the larger ones, but there is a lack of scientific data on MBCs. Hence, in this study, the effect of gas hold-up, flow regimes, bubble size distribution on volumetric oxygen mass transfer coefficient at different pore size spargers and gas flow rates in MBCs in the presence and absence of microorganisms were investigated. It was found that flow regime transition occurred around low gas flow rates of 1.18 and 0.85 cm/s for small (16–40 µm) and large (40–100 µm) pore size spargers, respectively. Gas hold-up and KLa in MBC with small size sparger were higher than those with larger one, with an increasing effect in the presence of microorganisms. A comparison revealed that the wall effect on the flow regime and gas hold-up in MBCs was greater than bench-scale bubble columns. The KLa values significantly increased up to tenfold using small pore size sparger. In the MBC and stirred tank bioreactors, the maximum obtained cell concentrations were OD600 of 41.5 and 43.0, respectively. Furthermore, it was shown that in MBCs, higher KLa and lower turbulency could be achieved at the end of bubbly flow regime.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号