首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified pectate lyase isozyme derived from Erwinia chrysanthemi induced rapid net K+ efflux and H+ influx in suspension-cultured tobacco cells. Comparable fluxes of other ions (Na+, Cl) were not observed. The K+ efflux/H+ influx response began within 15 minutes after addition of enzyme to cell suspensions and continued for approximately 1 hour after which cells resumed the net H+ efflux exhibited prior to enzyme treatment. The response was not prolonged by a second enzyme dose 1 hour after the first. The K+/H+ response was characterized by saturation at low enzymic activity (2 × 10−3 units per milliliter), and inhibition by the protonophore, carbonyl cyanide m-chlorophenylhydrazone, and was not associated with membrane leakiness caused by structural cell wall damage. The total K+ loss and H+ uptake induced by enzyme was one-fourth to one-third that induced by Pseudomonas syringae pv. pisi and did not reduce cell viability. These results indicate that pectate lyase induces a K+ efflux/H+ influx response in tobacco similar to but of shorter duration than that induced by P. syringae pv. pisi during the hypersensitive response. Pectate lyase or other cell wall degrading enzymes may therefore influence the induction of hypersensitivity.  相似文献   

2.
Net electrolyte efflux from suspension-cultured tobacco cells undergoing the hypersensitive reaction to Pseudomonas syringae pv. pisi resulted from a specific efflux of K+ which was accompanied by an equimolar net influx of H+. These fluxes began 60 to 90 minutes after inoculation of tobacco cells with bacteria, reached maximum rates of 6 to 9 micromoles per gram fresh weight tobacco cells per hour within 2.5 to 3 hours, and dropped below 4 micromoles per gram per hour within 5 hours. Tobacco cells lost approximately 35% of total K+ during this period, and average cellular pH declined by approximately 0.75 pH unit. These events were accompanied by a 30% decrease in cellular ATP. K+ and H+ fluxes were inhibited by the protonophore (p-trifluoromethoxy)carbonyl cyanide phenylhydrazone and by increasing the K+ concentration of the external solution. Tobacco leaf discs inoculated with the bacterium also exhibited a specific net K+ efflux and H+ influx. These results suggest that induction of the hypersensitive reaction in tobacco proceeds through the activation of a passive plasmalemma K+/H+ exchange mechanism. It is hypothesized that activation of this exchange is a major contributing factor in hypersensitive plant cell death.  相似文献   

3.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

4.
Reactions of corn root tissue to calcium   总被引:2,自引:1,他引:1       下载免费PDF全文
Washing corn (Zea mays L.) root tissue in water causes loss of about one-third of the exchangeable Ca2+ over the first 10 to 15 minutes. Upon transfer to K+-containing solutions, the tissue shows a short period of rapid K+ influx which subsequently declines. Addition of 0.1 millimolar Ca2+ decreases the initial rapid K+ influx, but increases the sustained rate of K+ and Cl uptake. It was confirmed (Elzam and Hodges 1967 Plant Physiol 42: 1483-1488) that 0.1 millimolar Ca2+ is more effective than higher concentrations for the initial inhibition, and that Mg2+ will substitute.

The inhibition arises from a mild shock affect of restoring Ca2+. With 0.1 millimolar Ca2+ net H+ efflux is blocked for 10 to 15 minutes and the cells are depolarized by about 30 millivolts. However, 1 millimolar Ca2+ rapidly produces increased K+ influx and blocks net H+ efflux for only a few minutes; blockage is preceded by a brief net H+ influx which may restore and increase ion transport by reactivating the plasmalemma H+-ATPase.

Stimulation of electrogenic H+-pumping with fusicoccin eliminates the shock responses and minimizes Ca2+ effects on K+ influx. Fusicoccin also strongly decreases Ca2+ influx, but has no effect on Ca2+ efflux. Ice temperatures and high pH decreased Ca2+ efflux, but uncoupler and chlorpromazine did not.

It is suggested that the inhibitory and promotive actions of Ca2+ are manifested through decreases or increases in the protonmotive force.

  相似文献   

5.
Seedlings of eleven varieties of barley (Hordeum vulgare L.) showed differences in utilization of K+ from a full nutrient solution containing 3.0 mM K+. The K+ content of both roots and shoots was proportional to the fresh weights and dry weights after a week in the nutrient solution. The K+ use-efficiency ratio, which indicates the efficiency of nutrient utilization (mg dry weight produced per mg K+ absorbed), differed significantly among the varieties. There was no correlation between influx of Rb+ and the content of K+. It is suggested that there are wide varietal differences in such genetically-determined properties as ion influx and efflux and net ion transport to the shoot. Further-more, the influx of Rb+ was closely linked to transpiration, probably due to a variety-specific non-metabolic part of Rb+ influx. Varietal differences in influx of Rb+ were more pronounced in high-K+ roots than in low-K+ roots with maximum rate of Rb+ uptake, but the rank of varieties was the same in each case. – Criteria for the selection of K+ use-efficient varieties of barley are discussed.  相似文献   

6.
H+-ATPase activity of a plasma membrane-enriched fraction decreased after the treatment of barley (Hordeum vulgare) seedlings with Al for 5 days. A remarkably high level of Al was found in the membrane fraction of Al-treated roots. A long-term effect of Al was identified as the repression of the H+-ATPase of plasma membranes isolated from the roots of barley and wheat (Triticum aestivum) cultivars, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive). To monitor short-term effects of Al, the electrical membrane potentials across plasma membranes of both wheat cultivars were compared indirectly by measuring the efflux of K+ for 40 min under various conditions. The rate of efflux of K+ in Scout was twice that in Atlas at low pH values such as 4.2. Vanadate, an inhibitor of the H+-ATPase of the plasma membrane, increased the efflux of K+. Al repressed this efflux at low pH, probably through an effect on K+ channels, and repression was more pronounced in Scout. Al strongly repressed the efflux of K+ irrespective of the presence of vanadate. Ca2+ also had a repressive effect on the efflux of K+ at low pH. The effect of Ca2+, greater in Scout, might be related to the regulation of the net influx of H+, since the effect was negated by vanadate. The results suggest that extracellular low pH may cause an increase in the influx of H+, which in turn is counteracted by the efflux of K+ and H+. These results suggest that the ability to maintain the integrity of the plasma membrane and the ability to recover the electrical balance at the plasma membrane through a net influx of H+ and the efflux of K+ seem to participate in the mechanism of tolerance to Al stress under acidic conditions.  相似文献   

7.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 · 10?3 M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl?) outward net flux uncoupled from net Na+ movement. Net K+ (Cl?) outward flux was half-maximally inhibited by 2 μM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

8.
Summary Osmotic responses of slices of dogfish rectal gland to hypotonic (urea-free) and hypertonic media were studied. Transfer of tissue from isotonic (890 mosM) to hypotonic (550 mosM) saline produced an osmotic swelling associated with a slow net uptake of cell K+ (and Cl) and a slow, two-component efflux of urea. Media made hypertonic (1180 mosM) by addition of urea or mannitol produced osmotic shrinkage with a net loss of KCl. The cell osmotic responses in hypotonic media were lower than predicted for an ideal osmometer. No volume regulatory responses were seen subsequent to the initial osmotic effects. The cation influx in hypotonic media lacked specificity: in the presence of 0.5 mM ouabain or in K+-free media a net influx of Na+ was found. At steady state, the cell membrane potential evaluated from the Nernst potentials of K+ and triphenylmethyl phosphonium+, was independent of medium tonicity, suggesting the membrane potential as a determinant in the cellular osmotic response. Zero-time86Rb+ fluxes were measured:86Rb+ influx was not affected by hypotonicity, implying an unchanged operation of the Na+–K+-ATPase. On the other hand,86Rb+ efflux was significantly reduced at hypotonicity; this effect was transient, the efflux returning to the control value once the new steady state of cell volume had been reached. A controlled efflux system is therefore involved in the cell osmotic response. The absence of the volume regulatory phenomenon suggests that the cells are not equipped with a volume-sensing mechanism.Abbreviations and symbols DW dry weight - E extracellular (polyethylene glycol) space - E Nernst potential - H2Oe H2Oi tissue water, extra- and intracellular - TPMP + triphenyl methyl phosphonium salt - WW wet weight  相似文献   

9.
Summary In storage tissue ofBeta vulgaris L., carbonyl cyanidem-chlorophenylhydrazone or cyanide+salicylhydroxamic acid reduce cell electropotentials from about –200 to below –100 mV. The relationship between potential and cellular ATP level is examined during treatment with different concentrations of inhibitiors. At low ATP levels the potential rises sharply with increases in ATP, but above an ATP level of approximately 50% of the uninhibited level the potential changes very little with ATP concentration. A plot of membrane potentialvs.86Pb+ influx or of potentialvs. net K+ uptake indicates that as the level of inhibition is decreased, the potential tends to reach a limit while cation influx and net uptake continue to increase. Resistance measurements, although subject to difficulties of interpretation, indicate no change in conductance with potential, ion flux, or ATP level. Thus the membrane potential should directly reflect electrogenic pump activity, attributed to active uncoupled H+ efflux. K+ uptake can occur against its electrochemical gradient and is attributed to a coupled K+ influx/H+ efflux pump. The results show that the electrogenic pump activity is independent of the K+/H+ exchange rate. Thus electrogenic H+ efflux and K+/H+ exchange may represent different transport systems, or different modes of operation of a single pump with variable stoichiometry.  相似文献   

10.
Summary The influence of K+ on the Na+ fluxes of barley root cells was investigated. A increased K+ concentration (K+ influx) results in a transient increase of the plasmalemma efflux of Na+ followed by a decrease, and in a decrease of the cytoplasmic content and the tonoplast influx of Na+. These results are consistent with a Na-K-pump at the plasmalemma.  相似文献   

11.
Summary Excised roots from axenically grown sunflower seedlings reduced or oxidized exogenously added 2,6-dichlorophenolindophenol (DCIP), DCIP-sulfonate (DCIP-S), and cytochromec, and affected simultaneous H+/K+ net fluxes. Experiments were performed with nonpretreated living and CN-pretreated poisoned roots (control and CN-roots). CN-roots showed no H+/K+ net flux activity but still affected the redox state of the compounds tested. The hydrophobic electron acceptor DCIP decreased the rate of H+ efflux in control roots with extension of the maximum rate and optimal pH ranges, then the total net H+ efflux (H+) equalled that of the roots without DCIP. The simultaneously measured K+ influx rate was first inhibited, then inverted into efflux, and finally influx recovered to low rates. This effect could not be due to uptake of the negatively charged DCIP, but due to the lower H+ efflux and the transmembrane electron efflux caused by DCIP, which would depolarize the membrane and open outward K+ channels. The different H+ efflux kinetics characteristics, together with the small but significant DCIP reduction by CN-roots were taken as evidence that an alternative CN-resistant redox chain in the plasma membrane was involved in DCIP reduction. The hydrophilic electron acceptor DCIP-S enhanced both H+ and K+ flux rates by control roots. DCIP-S was not reduced, but slightly oxidized by control roots, after a lag, while CN-roots did not significantly oxidize or reduce DCIP-S. Perhaps the hydrophobic DCIP could have access to and drain electrons from an intermediate carrier deep inside the membrane, to which the hydrophilic DCIP-S could not penetrate. Also cytochromec enhanced H+ and K+, consistent with the involvement of the CN-resistant redox chain. Control roots did not reduce but oxidize cytochromec after a 15 min lag, and CN-roots doubled the rate of cytochromec oxidation without any lag. NADH in the medium spontaneously reduced cytochromec, but control or CN-roots oxidized cytochromec, despite of the presence of NADH. In this case CN-roots were less efficient, while control roots doubled the rate of cytochromec oxidation by CN-roots, after a 10 min lag in which cytochromec was reduced at the same rate as the medium plus NADH did. CN-roots seemed to have a fully activated CN-resistant branch. The described effects on K+ flux were consistent with the current hypothesis that redox compounds changed the electric membrane potential (de- or hyperpolarization), which induces the opening of voltage-gated in- or outward K+ channels.Abbreviations Cyt c cytochromec - DCIP 2,6-dichlorophenolindophenol - DCIP-S 2,6-dichlorophenolindophenol 3-sulfonate - HCF(III) hexacyanoferrate (III) - PM plasma membrane - SHAM salicylhydroxamic acid - VH+ and VK+ H+ efflux and K+ influx rates - H+ and K+ total H+ efflux and K+ influx at the end of the experiment - H+ and K+ buffering power of the titrated medium  相似文献   

12.
Potassium fluxes, ouabain binding, and Na+ and K+ intracellular concentrations were determined for cultures of growing normal, density-inhibited and Rous sarcoma virus-transformed chicken embryo fibroblasts. No significant differences in K+ influx or ouabain binding were detected between growing normal cells and Rous sarcoma virus-transformed cells; however, ouabain binding and ouabain-sensitive K+ influx were 1.5- to 1.8-fold lower in density-inhibited cells. Thus, potassium influx in this system can be classified as a growth-related, but not transformation-specific change. As determined by both flame photometry and radioisotopic (42K) equilibration, growing normal and density-inhibited cells had similar potassium contents, whereas transformed cells exhibited 1.4-fold higher potassium levels. Sodium ion levels, as measured by flame photometry, were also 2- to 4.5-fold higher in transformed than normal or density-inhibited cells. Complementary studies of potassium efflux showed a 1.3- to 1.5-fold higher rate (based on the percentage of pool exiting the cell) in growing normal versus density-inhibited or transformed fibroblasts. Because of the larger potassium pool in transformed cells, efflux based on absolute number of potassium ions is similar in normal and transformed chicken embryo fibroblasts.  相似文献   

13.
Unidirectional, ouabain-insensitive K+ influx rose steeply with warming at temperatures above 37°C in guinea pig erythrocytes incubated in isotonic medium. The only component of ouabain-insensitive K+ influx to show the same steep rise was K-Cl cotransport (Q10 of 10 between 37 and 41°C); Na-K-Cl cotransport remained constant or declined and residual K+ influx in hypertonic medium with ouabain and bumetanide rose only gradually. Similar results were obtained for unidirectional K+ efflux. Thermal activation of K-Cl cotransport-mediated K+ influx was fully dependent on the presence of chloride in the medium; none occurred with nitrate replacing chloride. The increase of K+ influx through K-Cl cotransport from 37 to 41°C was blocked by calyculin A, a phosphatase inhibitor. The Q10 of K-Cl cotransport fully activated by hydroxylamine and hypotonicity was about 2. The time course of K+ entry showed an immediate transition to a higher rate when cells were instantly warmed from 37 to 41°C, but there was a 7-min time lag in returning to a lower rate when cells were cooled from 41 to 37°C. These results indicate that the steepness of the response of K-Cl cotransport to mild warming is due to altered regulation of the transporter. Total unidirectional K+ influx was equal to total unidirectional K+ efflux at 37–45°C, but K+ influx exceeded K+ efflux at 41°C when K-Cl cotransport was inhibited by calyculin or prevented by hypertonic incubation. The net loss of K+ that results from the thermal activation of isosomotic K-Cl cotransport reported here would offset a tendency for cell swelling that could arise with warming through an imbalance of pump and leak for Na+ or for K+. Received: 1 November 1997/Revised: 5 March 1998  相似文献   

14.
We report here on the putative coupling between a high affinity K+ uptake system which operates at low external K+ concentrations (Km = 10-20 micromolar), and H+ efflux in roots of intact, low-salt-grown maize plants. An experimental approach combining electrophysiological measurements, quantification of unidirectional K+(86Rb+) influx, and the simultaneous measurement of net K+ and H+ fluxes associated with individual cells at the root surface with K+- and H+-selective microelectrodes was utilized. A microelectrode system described previously (IA Newman, LV Kochian, MA Grusak, and WJ Lucas [1987] Plant Physiol 84: 1177-1184) was used to quantify net ion fluxes from the measurement of electrochemical potential gradients for K+ and H+ ions within the unstirred layer at the root surface. No evidence for coupling between K+ uptake and H+ efflux could be found based on: (a) extremely variable K+:H+ flux stoichiometries, with K+ uptake often well in excess of H+ efflux; (b) dramatic time-dependent variability in H+ extrusion when both fluxes were measured at a particular location along the root over time; and (c) a lack of pH sensitivity by the high affinity K+ uptake system (to changes in external pH) when net K+ uptake, unidirectional K+(86Rb+) influx, and K+-induced depolarizations of the membrane potential were determined in uptake solutions buffered at pH values from pH 4 to 8. Based on the results presented here, we propose that high affinity active K+ absorption into maize root cells is not mediated by a K+/H+ exchange mechanism. Instead, it is either due to the operation of a K+-H+ cotransport system, as has been hypothesized for Neurospora, or based on the striking lack of sensitivity to changes in extracellular pH, uptake could be mediated by a K+-ATPase as reported for Escherichia coli and Saccharomyces.  相似文献   

15.
We report here on an experimental system that utilizes ion-selective microelectrodes to measure the electrochemical potential gradients for H+ and K+ ions within the unstirred layer near the root surface of both intact 4-day-old corn seedlings and corn root segments. Analysis of the steady state H+ and K+ electrochemical potential gradients provided a simultaneous measure of the fluxes crossing a localized region of the root surface. Net K+ influx values obtained by this method were compared with unidirectional K+ (86Rb+) influx kinetic data; at any particular K+ concentration, similar values were obtained by either technique. The ionspecific microelectrode system was then used to investigate the association between net H+ efflux and net K+ influx. Although the computed H+:K+ stoichiometry is dependent upon the choice of diffusion coefficients, the values obtained were extremely variable, and net K+ influx rarely appeared to be charge-balanced by H+ efflux. In contrast to earlier studies, we found the cortical membrane potential to be highly K+ sensitive within the micromolar K+ concentration range. Simultaneous measurements of membrane potential and K+ influx, as a function of K+ concentration, revealed similar Km values for the depolarization of the potential (Km 6-9 micromolar K+) and net K+ influx (Km 4-7 micromolar K+). These data suggest that K+ may enter corn roots via a K+-H+ cotransport system rather than a K+/H+ antiporter.  相似文献   

16.
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H+-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H+ and K+ fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H+ symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H+ by the hexoseproton symport and charge compensation by K+ loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H+-ATPase caused a slow-down of the K+ efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H+ uptake and K+ loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H+ fluxes. The quantitative participation of the several phases of H+ and K+ flow depended on the pH of the medium, the ambient Ca2+ concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H+-ATPase never fully compensated for H+ uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K+ efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.Abbreviations DMO dimethyloxazolidinedione - EDTA ethylcnediaminetetraacetic acid - p.c. packed cell volume  相似文献   

17.
A study was made of the effects of temperature and calcium on the properties of K+ transport in rice roots (Oryza sativa L. cv. Dunghan Shali), in cell suspension culture of rice and in callus cultures. The rates of influx and efflux of K+ were measured by using 86Rb as tracer, and the net change in K+ content was determined by atomic absorption spectrophotometry. In roots of low salt status the K+ transport mechanism exhibits a positive temperature dependence and calcium exerts a stimulation. In cell and callus cultures a transport mechanism of this kind is lacking, and the K+ fluxes are inhibited by calcium and independent of temperature. Chilling-induced K+ leakage is similar for both types of tissue, and can be characterized by a negative temperature-coefficient and the inhibitory effect of calcium.  相似文献   

18.
It has recently been reported that plasmalemma electron transport may be involved in the generation of H+ gradients and the uptake of ions into root tissue. We report here on the influence of extracellular NADH and ferricyanide on K+ (86Rb+) influx, K+ (86Rb+) efflux, net apparent H+ efflux, and O2 consumption in 2-centimeter corn (Zea mays [A632 × Oh43]) root segments and intact corn roots. In freshly excised root segments, NADH had no effect on O2 consumption and K+ uptake. However, after the root segments were given a 4-hour wash in aerated salt solution, NADH elicited a moderate stimulation in O2 consumption but caused a dramatic inhibition of K+ influx. Moreover, net apparent H+ efflux was significantly inhibited following NADH exposure in 4-hour washed root segments.

Exogenous ferricyanide inhibited K+ influx in a similar fashion to that caused by NADH, but caused a moderate stimulation of net H+ efflux. Additionally, both reagents substantially altered K+ efflux at both the plasmalemma and tonoplast.

These complex results do not lend themselves to straightforward interpretation and are in contradiction with previously published results. They suggest that the interaction between cell surface redox reactions and membrane transport are more complex than previously considered. Indeed, more than one electron transport system may operate in the plasmalemma to influence, or regulate, a number of transport functions and other cellular processes. The results presented here suggest that plasmalemma redox reactions may be involved in the regulation of ion uptake and the `wound response' exhibited by corn roots.

  相似文献   

19.
Rapid calcium exchange for protons and potassium in cell walls of Chara   总被引:3,自引:2,他引:1  
Net fluxes of Ca2+, H+ and K+ were measured from intact Chara australis cells and from isolated cell walls, using ion-selective microelectrodes. In both systems, a stimulation in Ca2+ efflux (up to 100 nmol m?2 s?1, from an influx of ~40 nmol m?2 s?1) was detected as the H+ or K+ concentration was progressively increased in the bathing solution (pH 7.0 to 4.6 or K+ 0.2 to 10mol m?3, respectively). A Ca2+ influx of similar size occurred following the reverse changes. These fluxes decayed exponentially with a time constant of about 10 min. The threshold pH for Ca2+ efflux (pH 5.2) is similar to a reported pH threshold for acid-induced wall extensibility in a closely related characean species. Application of NH4+ to intact cells caused prolonged H+ efflux and also transient Ca2+ efflux. We attribute all these net Ca2+ fluxes to exchange in the wall with H+ or K+. A theoretical treatment of the cell wall ion exchanges, using the ‘weak acid Donnan Manning’ (WADM) model, is given and it agrees well with the data. The role of Ca2+ in the cell wall and the effect of Ca2+ exchanges on the measured fluxes of other ions, including bathing medium acidification by H+ efflux, are discussed.  相似文献   

20.
E. Komor  M. Thom  A. Maretzki 《Planta》1981,153(2):181-192
Sugarcane cell suspensions took up sugar from the medium at rates comparable to or greater than sugarcane tissue slices or plants in the field. This system offers an opportunity for the study of kinetic and energetic mechanisms of sugar transport in storage parenchyma-like cells in the absence of heterogeneity introduced by tissues. The following results were obtained: (a) The sugar uptake system was specific for hexoses; as previously proposed, sucrose was hydrolyzed by an extracellular invertase before the sugar moieties were taken up; no evidence for multiple sugar uptake systems was obtained. — (b) Uptake of the glucose-analog 3-O-methylglucose (3-OMG) reached a plateau value with an intracellular concentration higher than in the medium (approximately 15-fold). — (c) There was a balance of influx and efflux during steady state; the rate of exchange influx was lower than the rate of net influx; the Km value was higher (70 M) than for net influx (24 M); the exchange efflux is proposed to be mediated by the same transport system with a Km value of approximately 2.6 mM for internal 3-OMG; the rate of net efflux of hexoses was less than a third of the rate of exchange efflux. — (d) The uptake of hexoses proceeded as proton-symport with a stoichiometry of 0.87 H+ per sugar; during the onset of hexose transport there was a K+ exit of 0.94 K+ per sugar for charge compensation. (It was assumed that the real stoichiometries are 1 H+ and 1 K+ per sugar.) The Km values for sugar transport and sugar-induced proton uptake were identical. Sucrose induced proton uptake only in the presence of cell wall invertase. — (e) There was no net proton uptake with 3-OMG by cells which were preloaded with glucose though there was significant sugar uptake. It is assumed, therefore, that the exit of hexose occurs together with protons. — (f) The protonmotive potential of sugarcane cells corresponded to about 120 mV: pH-gradient 1.1 units, membrane potential of-60 mV (these values increased if vacuolar pH and membrane potential were also considered). It was abolished by uncouplers, and the magnitude of the components depended on the external pH value. We present evidence for the operation of a proton-coupled sugar transport system in cell suspensions that were derived from, and have characteristics of, storage parenchyma. The quantitative rates of sugar transport suggest that the role of this transport system is not limiting for sugar storage.Abbreviations 3-OMG 3-O methylglucose - DMO 5,5-dimethyl-2, 4-oxazolidinedione - TPP tetraphenylphosphonium chloride - CCCP carbonyl cyanide, m-chlorophenylhydrozane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号