首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bochkov AV 《Parazitologiia》2011,45(4):257-272
Host-parasite relationships of mammals and astigmatan mites (Acariformes: Astigmata) belonging to the parvorder Psoroptidia are analyzed. The absolute majority of mammal-associated psoroptidians belongs to the paraphyletic superfamily Sarcoptoidea. Mites of the family complex Psoroptidae (Lobalgidae, Psoroptidae, and Paracoroptinae) shifted from birds to placental mammals independently from each other. Mites of the family complex Sarcoptidae, including all other sarcoptoid families, derived from the common stalk of Psoroptidia independently from the Psoroptid complex. Mites of the sarcoptid complex shifted from nidicoly in mammalian nests to the permanent parasitism on these hosts. They are widely represented on both marsupial and placental mammals and are absent on Monotremata.  相似文献   

2.
Bochkov AV 《Parazitologiia》2004,38(2):122-138
A modern system, phylogeny, distribution and host parasite relationships of cheyletid mites (Acari: Prostigmatal Cheyletidae) is shortly discussed. According to the phylogenetic hypothesis proposed by Bochkov and Fain (2001), the family Cheyletidae includes now 15 tribes: Acaropsellini, Bakini, Cheletogenini, Cheletosomatini, Chelonotini, Cheyletiini, Cheyletiellini, Cheyletini, Cheletomorphini, Criokerontini, Metacheyletiini, Niheliini, Ornithocheyletiini, Teinocheylini and one unnamed tribe including the genera Caudacheles and Alliea. The parasitic Cheyletidae were primarily free-living predators, frequently associated with nests of vertebrates. These mites, being predators, have numerous preadaptations to the parasitic mode of life and they possess high ecological plasticity. Therefore it was quite easy for these mites to adapt to parasitism on the vertebrates. According to our phylogenetical hypothesis, the parasitism on vertebrates has arisen independently in several phylogenetic lines of the cheyletids associated with nests of vertebrates. Such transition from nest predation to true parasitism probably occurred repeatedly and at different times. The cheyletid mites are more widely represented on birds than on mammals. Possibly, it is in relation with a more early origin of parasitism in the cheyletids associated with bird nests than in the cheyletids associated with mammal nests. An independent origin of the parasitism in many different cheyletid phyletic lines, arisen significantly later than the origin of such a parasitic group as myobiid mites, is probably the main reason, which could explain the recent mosaic distribution of the Cheyletidae among the mammalian taxa. Parasitic associations between cheyletids and vertebrates are more common than the associations between these mites and the invertebrates. In the invertebrates, these associations are generally restricted to a phoresy. The zoogeographical analysis showed that this family as whole is characterised by the extremely low endemisms. The most part of the free-living cheyletid mites are associated with Holarctic region (87%) and, therefore, this family, probably, originated there.  相似文献   

3.
Ecological correlates of feather mite prevalence in passerines   总被引:1,自引:0,他引:1  
The relationship between host ecology and feather mite prevalence was analysed in birds. Feather mites are small arthropods (fam. Pterolichoidea and Analgoidea) commonly found on birds, although the nature of their interactions with the host (commensalism, mutualism or parasitism), still remains unclear. Host body mass and migratory behaviour were unrelated to feather mite prevalence. Contrary to expectation, there was no differences in mite prevalence between colonial and solitary-breeding species. However, winter sociality was associated with increased prevalence, suggesting that winter and breeding sociality affected the distribution patterns of feather mites in different ways. Plumage dichromatism was negatively correlated with feather mite prevalence, a result that is opposite to that predicted by the Hamilton and Zuk hypothesis for the evolution of host secondary sexual characteristics in relation to parasitism.  相似文献   

4.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine-tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non-moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather-level decisions on where to live, contradicting the current view that mites perform "mass", or "blind" movements across wing feathers. Moreover, our findings indicate that "rare" distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient-bird-feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

5.
Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane‐dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high‐throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long‐standing question of the nature of the relationship between birds and their vane‐dwelling feather mites, supporting previous evidence for a commensalistic–mutualistic role of feather mites, which are revealed as likely fungivore–microbivore–detritivore symbionts of bird feathers.  相似文献   

6.
Phylogenic relationships of the Psoroptidia, a group of primarily parasitic mites of vertebrates, were investigated based on sequences from three nuclear genes (4.2 kb aligned) sampled from 126 taxa. Several morphological classification schemes and a recent molecular analysis, suggesting that the group may not be monophyletic were statistically rejected by newly generated molecular data, and the results are robust under a range of analytical and partition strategies. Six families Psoroptidae, Lobalgidae (mammalian parasites), Pyroglyphidae (house dust mites and parasites inside feather calamus), Turbinoptidae (upper respiratory track parasites of birds), Psoroptoididae (downy feather mites), and Epidermoptidae (skin parasites of birds) form a well-supported monophyletic group (the epidermoptid-psoroptid complex). These relationships, recovered by combined and separate analyses of all gene partitions, were previously suspected based on some morphological evidence, but evidence has been dismissed as resulting from convergence based on similar parasitic ecologies. The existence of the epidermoptid-psoroptid complex and the statistical rejection of Sarcoptoidea (the morphology-based group joining all mammal-associated mites) indicate that current classification criteria, influenced as they are by host preferences, need to be reassessed for non-pterolichoid superfamilies. However, two of our findings remain sensitive to analytical methods and assumptions: (i) the families Heterocoptidae and Hypoderatidae as the first and second closest outgroups of Psoroptidia, respectively, and (ii) the superfamily Pterolichoidea (including Freyanoidea) forming a sister clade to the remaining psoroptidian superfamilies. Our findings suggest that (i) house dust mites (Pyroglyphidae: Dermatophagoidinae) originated from a parasitic ancestor within the core of Psoroptidia, violating a basic principle of evolution that it is virtually impossible for a permanent parasite to become free-living, and (ii) there were at least two shifts from presumably avian to mammalian hosts.  相似文献   

7.
The distribution of parasitic mites of the Psoroptidia group on mammals was analyzed. Nearly all the mammal-associated Psoroptidia belong to the paraphyletic superfamily Sarcoptoidea. Mites of the family complex Psoroptidae (Lobalgidae, Psoroptidae, and Paracoroptinae) shifted from birds to parasitism on placental mammals independently from each other. Mites of the Sarcoptidae complex, comprising all the other mammal-associated Psoroptidia, originated from the common stalk of Psoroptidia independently. They are widely represented on both marsupial and placental mammals and are primarily or secondarily absent on Monotremata.  相似文献   

8.
The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin.  相似文献   

9.
Feather mites are highly specialized plumage and skin ectoparasites that are variously adapted for inhabiting certain microhabitats on a bird's body. Different feather mite taxa of higher (familial) rank adapted to the same microhabitats display similar main morphological adaptations even if they are rather distantly related to one another. Hypotheses on the evolution of general adaptations in morphology of feather mites during colonization and establishment in different microhabitats are presented. According to recent data, feather mites are a paraphyletic group consisting of three superfamilies: Analgoidea, Pterolichoidea and Freyanoidea. We present our view on the general feather mite phylogeny course at the familial rank for the Analgoidea by means of cladistic analysis. Co-speciation of parasites with their hosts is postulated as a main factor driving feather mite evolution. Examples are given of non-coevolutionary events, for example recolonization from one host species onto another, extinction and multiple speciation.  相似文献   

10.
Although parasites may impair the expression of tail ornaments in birds, the importance of parasitism in driving the evolution of the initial stages of tail ornamentation is not well understood. Parasites could have negatively affected the expression of nonexaggerated, functional traits before these evolved ornaments, or they could have played a relevant role only after tails became ornamental and hence too costly to produce. To shed light on this issue, we studied the correlation between the abundance of feather mites (Acari, Proctophyllodidae) and the size, quality, growth rate and symmetry of tail feathers of blackcaps ( Sylvia atricapilla ), a non-ornamented passerine. Tail length was not correlated with mite load, yet blackcaps holding many mites at the moment of feather growth (fledglings) had lighter and more asymmetric feathers that grew at relatively lower rates. In blackcaps whose mite load was measured one year after feather growth (adults), only the negative correlation between mite intensity and feather symmetry remained significant. Changes in mite load since the moult season could have erased the correlation between condition-dependent feather traits and current parasite load in adults. Our results support the idea that different traits of non-ornamental feathers can signal parasite resistance. Therefore, parasitism could have played a central role in the evolution of tail ornamentation ever since its initial stages.  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 481–492.  相似文献   

11.
戴轩  张珍梁 《蛛形学报》2011,20(1):27-29
报道了贵州东部地区茶园土壤中气门和前气门螨类29种,分属2亚目11科。  相似文献   

12.
Phytoseiid mite larvae vary in size and feeding type. We compared larval size to feeding by larvae, cannibalism of larvae by adult females, egg and adult female size and the setae lengths of larvae and adults among 13 species. There was no relationship between size of larvae and either feeding by larvae or cannibalism of larvae by adult female mites. Correlations were highest between larval size as measured by idiosoma plus extended leg lengths and adult female size of idiosoma plus extended leg lengths (r2=0.746), while next highest was larval idiosoma length and adult female idiosoma length (r2=0.662) and then larval idiosoma length and egg length (r2=0.579). Based on idiosoma length, Phytoseiulus persimilis had the largest larvae (non-feeding) among species and Euseius finlandicus had the smallest larvae (obligatory feeding). However, based on idiosoma length plus extended leg length, obligatory feeding larvae (on pollen or mites) of E. finlandicus and Euseius hibisci were largest and facultative feeding larvae (on mites) of Neoseiulus californicus and obligatory feeding larvae (on mites) of Galendromus occidentalis were the smallest. Among species with non- or facultative feeding larvae, Amblyseius andersoni and Neoseiulus barkeri had larger larvae and Typhlodromus pyri and Neoseiulus fallacis had smaller larvae when leg lengths were included in larval size. Setae lengths of larvae versus adult females (after adjustment for body sizes) showed high correlation for j6 (r2=0.942) and s4 (r2=0.854), but low correlation for larval Z4 versus adult female Z4 (r2=0.084) or Z5 (r2=0.063). Overall, larval morphological traits were most closely correlated to traits of other life stages, although for setae there were some exceptions. Differences in the functions of setae j6, s4 and Z4 in the larva versus adult female are discussed.  相似文献   

13.
Feather mites (Astigmata) are specialized parasites living on the plumage and skin of birds. The paper presents data on infestation of some passerines (Passeriformes) by feather mites in the south of Western Siberia (Omsk and Tyumen Provinces). We found 24 species of feather mites belonging to the families Analgidae, Dermoglyphidae, Pteronyssidae, Trouessartiidae, and Proctophyllodidae on 16 bird species. Among them, 19 species are common parasites of the passerine birds examined; five species were detected on atypical hosts. Ten mite species were recorded for the first time on the passerine species examined. Analysis of the distribution of abundant and common mite species on their hosts has demonstrated that the majority of the bird parasites possess a specific distribution pattern in the host plumage with preference for certain feather types. We have also obtained new data on host associations of several mite species.  相似文献   

14.
We analyzed the pattern of distribution and the effect of moltingon the escape behavior of feather mites on the wing feathersduring the nonmolting and molting season of the barn swallowHirundo rustica. Feather mites showed consistent preferencefor the second outermost primary, with a steady decrease inproximal distance and avoidance of the outermost primary. Severalexplanations are suggested to explain this unusual distribution.Further, analyzing the escape behavior of feather mites on moltingprimaries, we show that mites avoid the feathers destined tobe dropped next on molting barn swallows, and in the case ofthe outermost primary, mites use the "last moment" strategy,namely, leaving feathers shortly before it is dropped. Next,we performed an experiment in which we simulated shedding feathersor feathers about to be shed on nonmolting barn swallows, inorder to test cues used by feather mites in avoiding moltingprimaries. Both the vibration of the incised feather and thegap of the pulled feather induced mites to leave primaries situateddistally, at two-feathers distance from the manipulated primary,related to the control group. Our results show that feathermites have the ability to perceive the signal produced by thefeather that will drop next and by the gap of the missing feather.It remains to be demonstrated, whether feather mites have theability to perceive the vibration of the feather per se or theyperceive the altered airflow caused by the vibrating feathers.  相似文献   

15.
A process of infecting the chaffinch nestlings Fringilla coelebs with three analgoid feather mites, Analges passerinus L., 1758, Monojoubertia microphylla (Robin, 1877), and Pteronyssoides striatus (Robin, 1977), commonly occurred on this bird species was investigated. 15 nests contained totally 65 nestlings, from 2 to 6 individuals in a brood, have been examined from the day of hatching till 11th day. Observations were held in the neighbourhood of the bird banding station "Rybachy" (Russia, Kaliningrad Province) in June of 1982. Number of mites on alive nestlings taken temporarily from their nest was counted by means of binocular lens under the magnification x12.5 and x25. The nestlings receive the mites from the chaffinch female during the night time, when the female sits together with the young birds and heats them. In the condition of this prolonged direct contact the mites migrate from the female onto the nestlings. As it was shown in our study of seasonal dynamics of mites on the chaffinch (Mironov, 2000), the chaffinch female only gives its mites to young generation and looses about three quarter of its mite micropopulation during the nesting period (June), hile in the chaffinch males the number of mites continues to increase during all summer. The infections with three feather mite species happen in the second part of the nestling's stay in the nest. The starting time of this process, its intensity, and sex and age structure of mite micropopulations on the nestlings just before their leaving the nest are different in the mite species examined. These peculiarities of feather mite species are determined by the biology of examined species, and first of all by their morphological characteristic and specialisation to different microhabitats, i.e. certain structural zones of plumage. Pteronyssoides striatus (Pteronyssidae) is rather typical mite specialised to feathers with vanes. In adult birds with completely developed plumage this species occupies the ventral surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches on 11th day 60.3 +/- 5.7 mites per nestling. In the micropopulation of this species, the tritonymphs count 38.3%, and the quota of males and females is 25.3% each. The migration of this species goes most intensively, than in two other species. An analitic selection of logistic curves shows, that the increasing of mite number during the process of infection with three mite species may be most adequately described by the sigmoid curves with clearly recognizable levels of saturation, which can be theoretically reached. Indeed, the number of mite individuals being able to migrate onto the nestlings is limited by their number on a respective chaffinch female. In a contrast, the increasing of plumage indices, for instance the length of flight feathers, has almost linear character during the period of observation. The beginning of mite migration is determined by the development of respective microhabitats in the plumage of nestlings, or at least by the development of certain structure elements of plumage, where mites are able to attach for a while, before that moment, when the nestlings will develop the plumage completely and begin to fly. In three mite species examined, the process of infection was performed by older stages, namely by the imago and/or tritonymphs. This can be explained by two reasons. On the one hand, the older stages are most active in their movement, resistible and able to survive successfully on new host individuals. On the other hand, the older stage are ready for the reproduction or will be ready after one moulting. The older stages of mites can quickly create a large and self-supporting micropopulations on the birds, therefore this strategy ensures a successful subsequent existence of the parasite species. In cases, when mites (A. passerinus, M. microphylla) migrate into the respective microhabitats structurally corresponding to their normal microhabitats on adult birds, the micropopulations of these mite species include a significant or dominant quota of females and males. When the normal microhabitat is not yet formed, feather mites migrate into neighboring structure elements of plumage, where they can survive and wait for the development of normal microhabitat, to which they are well adapted. Therefore, in the case of P. striatus, its micropopulations on the chaffinch nestlings are represented mainly by the tritonymphs.  相似文献   

16.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

17.
The "condition-specific competition hypothesis" proposes that coexistence of 2 species is possible when spatial or temporal variations in environmental conditions exist and each species responds differently to those conditions. The distribution of different species of feather mites on their hosts is known to be affected by intrinsic host factors such as structure of feathers and friction among feathers during flight, but there is also evidence that external factors such as humidity and temperature can affect mite distribution. Some feather mites have the capacity to move through the plumage rather rapidly, and within-host variation in intensity of sunlight could be one of the cues involved in these active displacements. We analyzed both the within- and between-feather spatial distribution of 2 mite species, Trouessartia bifurcata and Dolichodectes edwardsi , that coexist in flight feathers of the moustached warbler Acrocephalus melanopogon. A complex spatial segregation between the 2 species was observed at 3 spatial levels, i.e., "feather surfaces," "between feathers," and "within feathers." Despite certain overlapping distribution among feathers, T. bifurcata dominated proximal and medial regions on dorsal faces, while D. edwardsi preferred disto-ventral feather areas. An experiment to check the behavioral response of T. bifurcata to sunlight showed that mites responded to light exposure by approaching the feather bases and even leaving its dorsal face. Spatial heterogeneity across the 3 analyzed levels, together with response to light and other particular species adaptations, may have played a role in the coexistence and segregation of feather mites competing for space and food in passerine birds.  相似文献   

18.
A new feather mite, Allopsoroptoides galli n. g., n. sp. (Psoroptoididae: Pandalurinae), is described from the domestic chicken, Gallus gallus (Linnaeus) (Galliformes: Phasianidae), from Brazil. This is the first record of a representative of the feather mite family Psoroptoididae from an avian host of the order Galliformes. The new genus is closely related to the genus Cygnocoptes Fain & Bochkov, 2003 but clearly differs from the latter and all other genera of the family by the loss of four median pairs of hysteronotal setae (c1, d1, e1, and h1) in both sexes and by the unique shape of the male opisthosoma. Instead of the bilobate opisthosoma, the male opisthosoma in this genus has a narrow and long median projection, ending with a pair of semi-ovate terminal lamellae. These mites were first detected during a mange outbreak in several commercial poultry facilities in the state of São Paulo, Brazil.  相似文献   

19.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   

20.
Coexistence of terrestrial vertebrates and arthropods has been continuing over 200 million years; various forms of parasitism originated independently in various groups of arthropods during this period. The association of Acari and insects with nests and shelters of their hosts (nidicoly) played the main role in the origin of parasitism in these major groups of arthropods. The primary step in the evolution of parasitism was the permanent habitation in nests and borrows of mammals and birds in Mesozoic era. The second step was a substitution of various forms of schizophagy by the regular feeding on products of vital activity and dead parts of host body. The next step was the feeding on various body parts of vertebrate hosts, namely skin, hair, feathers, external excreta, and drops of blood. The final step was the development of the ability to damage skin and suck out the blood of vertebrates. In some taxa of astigmatid mites the parasitism on birds originated from phoresy: hypopi (heteromorphous deutonymphs) obtained the ability to absorb the liquid nutrients from hair follicles and subcutaneous tissues through the cuticle. The development of haematophagous feeding on mammals in several families of Diptera was the second way of the origin of parasitism. Highly mobile dipterans with the piercing-sucking or licking mouthparts were able to change easily from the accidental puncturing of the host skin or licking of the blood, pus, and mucus to the obligatory haematophagy. The evolution of some arthropod taxa did not went beyond a primary domination of spatial relations, as in many astigmatid mites, or trophic relations in the form of micropredatory, as in the haematophagous Diptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号