首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three retinol dehydrogenases (RDHs) were tested for steroid converting abilities: human and murine RDH 12 and human RDH13. RDH12 is involved in retinal degeneration in Leber's congenital amaurosis (LCA). We show that murine Rdh12 and human RDH13 do not reveal activity towards the checked steroids, but that human type 12 RDH reduces dihydrotestosterone to androstanediol, and is thus also involved in steroid metabolism. Furthermore, we analyzed both expression and subcellular localization of these enzymes.  相似文献   

2.
Mutations of the photoreceptor retinol dehydrogenase 12 (RDH12) gene cause the early onset retinal dystrophy Leber congenital amaurosis (LCA) by mechanisms not completely resolved. Determining the physiological role of RDH12 in photoreceptors is the focus of this study. Previous studies showed that RDH12, and the closely related retinol dehydrogenase RDH11, can enzymatically reduce toxic lipid peroxidation products such as 4-hydroxynonenal (4-HNE), in vitro. To explore the significance of this activity, we investigated the ability of RDH11 and RDH12 to protect stably transfected HEK-293 cells against the toxicity of 4-HNE. Both enzymes protected against 4-HNE modification of proteins and 4-HNE-induced apoptosis in HEK-293 cells. In the retina, exposure to bright light induced lipid peroxidation, 4-HNE production, and 4-HNE modification of proteins in photoreceptor inner segments, where RDH11 and RDH12 are located. In mouse retina, RDH12—but not RDH11—protected against adduct formation, suggesting that 4-HNE is a physiological substrate of RDH12. RDH12—but not RDH11—also protected against light-induced apoptosis of photoreceptors. We conclude that in mouse retina RDH12 reduces 4-HNE to a nontoxic alcohol, protecting cellular macromolecules against oxidative modification and protecting photoreceptors from light-induced apoptosis. This activity is of particular significance to the understanding of the molecular mechanisms of RDH12-induced LCA.  相似文献   

3.
RDH12 has been suggested to be one of the retinol dehydrogenases (RDH) involved in the vitamin A recycling system (visual cycle) in the eye. Loss of function mutations in the RDH12 gene were recently reported to be associated with autosomal recessive childhood-onset severe retinal dystrophy. Here we show that RDH12 localizes to the photoreceptor inner segments and that deletion of this gene in mice slows the kinetics of all-trans-retinal reduction, delaying dark adaptation. However, accelerated 11-cis-retinal production and increased susceptibility to light-induced photoreceptor apoptosis were also observed in Rdh12(-/-) mice, suggesting that RDH12 plays a unique, nonredundant role in the photoreceptor inner segments to regulate the flow of retinoids in the eye. Thus, severe visual impairments of individuals with null mutations in RDH12 may likely be caused by light damage(1).  相似文献   

4.
Retinol dehydrogenase 12 (RDH12) is an NADP(+)-dependent oxidoreductase that in vitro catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol or the oxidation of retinol to retinaldehyde depending on substrate and cofactor availability. Recent studies have linked the mutations in RDH12 to severe early-onset autosomal recessive retinal dystrophy. The biochemical basis of photoreceptor cell death caused by mutations in RDH12 is not clear because the physiological role of RDH12 is not yet fully understood. Here we demonstrate that, although bi-directional in vitro, in living cells, RDH12 acts exclusively as a retinaldehyde reductase, shifting the retinoid homeostasis toward the increased levels of retinol and decreased levels of bioactive retinoic acid. The retinaldehyde reductase activity of RDH12 protects the cells from retinaldehyde-induced cell death, especially at high retinaldehyde concentrations, and this protective effect correlates with the lower levels of retinoic acid in RDH12-expressing cells. Disease-associated mutants of RDH12, T49M and I51N, exhibit significant residual activity in vitro, but are unable to control retinoic acid levels in the cells because of their dramatically reduced affinity for NADPH and much lower protein expression levels. These results suggest that RDH12 acts as a regulator of retinoic acid biosynthesis and protects photoreceptors against overproduction of retinoic acid from all-trans-retinaldehyde, which diffuses into the inner segments of photoreceptors from illuminated rhodopsin. These results provide a novel insight into the mechanism of retinal degeneration associated with mutations in RDH12 and are consistent with the observation that RDH12-null mice are highly susceptible to light-induced retinal apoptosis in cone and rod photoreceptors.  相似文献   

5.
Mutations in the crumbs homologue 1 (CRB1) gene cause a specific form of retinitis pigmentosa (RP) that is designated "RP12" and is characterized by a preserved para-arteriolar retinal pigment epithelium (PPRPE) and by severe loss of vision at age <20 years. Because of the early onset of disease in patients who have RP with PPRPE, we considered CRB1 to be a good candidate gene for Leber congenital amaurosis (LCA). Mutations were detected in 7 (13%) of 52 patients with LCA from the Netherlands, Germany, and the United States. In addition, CRB1 mutations were detected in five of nine patients who had RP with Coats-like exudative vasculopathy, a relatively rare complication of RP that may progress to partial or total retinal detachment. Given that four of five patients had developed the complication in one eye and that not all siblings with RP have the complication, CRB1 mutations should be considered an important risk factor for the Coats-like reaction, although its development may require additional genetic or environmental factors. Although no clear-cut genotype-phenotype correlation could be established, patients with LCA, which is the most severe retinal dystrophy, carry null alleles more frequently than do patients with RP. Our findings suggest that CRB1 mutations are a frequent cause of LCA and are strongly associated with the development of Coats-like exudative vasculopathy in patients with RP.  相似文献   

6.
Li L  Xiao X  Li S  Jia X  Wang P  Guo X  Jiao X  Zhang Q  Hejtmancik JF 《PloS one》2011,6(5):e19458

Background

Leber congenital amaurosis (LCA) is the earliest onset and most severe form of hereditary retinal dystrophy. So far, full spectrum of variations in the 15 genes known to cause LCA has not been systemically evaluated in East Asians. Therefore, we performed comprehensive detection of variants in these 15 genes in 87 unrelated Han Chinese patients with LCA.

Methodology/Principal Findings

The 51 most frequently mutated exons and introns in the 15 genes were selected for an initial scan using cycle sequencing. All the remaining exons in 11 of the 15 genes were subsequently sequenced. Fifty-three different variants were identified in 44 of the 87 patients (50.6%), involving 78 of the 88 alleles (11 homozygous and 56 heterozygous variants). Of the 53 variants, 35 (66%) were novel pathogenic mutations. In these Chinese patients, variants in GUCY2D are the most common cause of LCA (16.1% cases), followed by CRB1 (11.5%), RPGRIP1 (8%), RPE65 (5.7%), SPATA7 (4.6%), CEP290 (4.6%), CRX (3.4%), LCA5 (2.3%), MERTK (2.3%), AIPL1 (1.1%), and RDH12 (1.1%). This differs from the variation spectrum described in other populations. An initial scan of 55 of 215 PCR amplicons, including 214 exons and 1 intron, detected 83.3% (65/78) of the mutant alleles ultimately found in these 87 patients. In addition, sequencing only 9 exons would detect over 50% of the identified variants and require less than 5% of the labor and cost of comprehensive sequencing for all exons.

Conclusions/Significance

Our results suggest that specific difference in the variation spectrum found in LCA patients from the Han Chinese and other populations are related by ethnicity. Sequencing exons in order of decreasing risk is a cost-effective way to identify causative mutations responsible for LCA, especially in the context of genetic counseling for individual patients in a clinical setting.  相似文献   

7.
Leber’s congenital amaurosis (LCA) is the earliest and most severe of all inherited retinal dystrophies. Recently, we mapped an LCA gene to chromosome 17p13.1 (LCA1) and ascribed the disease to mutations of the retinal guanylate cyclase (ret GC) gene in a subset of families of North African ancestry. Owing to the genetic heterogeneity of LCA and considering that LCA1 results from an impaired production of cGMP in the retina (with permanent closure of cGMP-gated cation channels), we hypothesized that the activation of the cGMP phosphodiesterase (PDE) could trigger the disease by lowering the intracellular cGMP level in the retina. The rod and cone cGMP-PDE inhibitory subunits were regarded therefore as candidate genes in LCA. Here, we report the exclusion of five rod and cone cGMP-PDE subunits in LCA families unlinked to chromosome 17p13. Received: 7 April 1997 / Accepted: 3 November 1997  相似文献   

8.

Objective

Retinitis pigmentosa (RP) is the most prevalent type of inherited retinal degeneration and one of the commonest causes of genetically determined visual dysfunction worldwide. To date, approximately 35 genes have been associated with nonsyndromic autosomal recessive RP (arRP), however the small contribution of each gene to the total prevalence of arRP and the lack of a clear genotype–phenotype correlation complicate the genetic analysis in affected patients. Next generation sequencing technologies are powerful and cost-effective methods for detecting causative mutations in both sporadic and familial RP cases.

Methods

A Mexican family with 5 members affected from arRP was studied. All patients underwent a complete ophthalmologic examination. Molecular methods included genome-wide SNP homozygosity mapping, exome sequencing analysis, and Sanger-sequencing confirmation of causal mutations.

Results

No regions of shared homozygosity among affected subjects were identified. Exome sequencing in a single patient allowed the detection of two missense mutations in the RDH12 gene: a c.446T>C transition predicting a novel p.L149P substitution, and a c.295C>A transversion predicting a previously reported p.L99I replacement. Sanger sequencing confirmed that all affected subjects carried both RDH12 mutations.

Conclusions

This study adds to the molecular spectrum of RDH12-related retinopathy and offers an additional example of the power of exome sequencing in the diagnosis of recessively inherited retinal degenerations.  相似文献   

9.
Leber congenital amaurosis (LCA) is a clinically and genetically heterogeneous retinal dystrophy. The causes of LCA have been unraveled partially at the molecular level. At least 14 genes have been reported that, when mutated, result in LCA. To understand the roles of the known genes in LCA, a group of outbred subjects from 60 apparently either recessive families, with one or more affected individuals, or isolated patients were evaluated. One affected individual from each family underwent comprehensive mutational analysis by direct DNA sequencing of all coding regions and splice junctions of 13 LCA genes. Mutations were identified in 70% of individuals. CEP290 made the largest contribution to the identified mutations, providing 43% of those mutant alleles. We identified seven families in which affected individuals with two mutant alleles, sufficient to cause disease, had an additional mutation at a second LCA locus. Our findings suggest that mutational load can be important to penetrance of the LCA phenotype.  相似文献   

10.
Chen Y  Moiseyev G  Takahashi Y  Ma JX 《FEBS letters》2006,580(17):4200-4204
RPE65, a membrane-associated protein in the retinal pigment epithelium, is the isomerohydrolase essential for regenerating 11-cis retinal, the chromophore for visual pigments. RPE65 mutations are associated with inherited retinal dystrophies. Here we report that single point mutations of RPE65, Y144D and P363T, identified in patients with Leber's congenital amaurosis (LCA), significantly decreased the stability of RPE65. Moreover, these mutations altered subcellular localization of RPE65 and abolished its isomerohydrolase activity. These observations suggest that the decreased protein stability and altered subcellular localization of RPE65 may represent a mechanism for these mutations to lead to vision loss in LCA patients.  相似文献   

11.
Q Zheng  Y Ren  R Tzekov  Y Zhang  B Chen  J Hou  C Zhao  J Zhu  Y Zhang  X Dai  S Ma  J Li  J Pang  J Qu  W Li 《PloS one》2012,7(8):e44855
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.  相似文献   

12.
Seung-Ah Lee 《FEBS letters》2010,584(3):507-59
Mutations in retinol dehydrogenase 12 (RDH12) cause severe retinal degeneration. However, some of the disease-associated RDH12 mutants retain significant catalytic activity, indicating the existence of additional pathophysiological mechanisms. This study demonstrates that the catalytically active T49M and I51N mutants undergo accelerated degradation, which results in their reduced cellular levels. Inhibition of proteasome leads to significant accumulation of ubiquitylated T49M and I51N. Furthermore, the degree of ubiquitylation strongly correlates with the half-lives of the proteins. These results suggest that the accelerated degradation of RDH12 mutants by the ubiquitin-proteasome system contributes to the pathophysiology and phenotypic variability associated with mutations in the RDH12 gene.

Structured summary

MINT-7383581, MINT-7383598: RDH12 (uniprotkb:Q96NR8) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

13.
《PloS one》2013,8(1)
Leber congenital amaurosis (LCA) is the earliest and most severe retinal degeneration (RD), and the most common cause of incurable blindness diagnosed in children. It is occasionally the presenting symptom of multisystemic ciliopathies which diagnosis will require a specific care of patients. Nineteen LCA genes are currently identified and three of them account for both non-syndromic and syndromic forms of the disease. RD3 (LCA12) was implicated as a LCA gene based on the identification of homozygous truncating mutations in two LCA families despite the screening of large cohorts of patients. Here we provide a comprehensive survey of RD3 mutations and of their clinical expression through the screening of a cohort of 852 patients originating worldwide affected with LCA or early-onset and severe RD. We identified three RD3 mutations in seven unrelated consanguineous LCA families - i.e., a 2 bp deletion and two nonsense mutations – predicted to cause complete loss of function. Five families originating from the Southern Shores of the Mediterranean segregated a similar mutation (c.112C>T, p.R38*) suggesting that this change may have resulted from an ancient founder effect. Considering the low frequency of RD3 carriers, the recurrence risk for LCA in non-consanguineous unions is negligible for both heterozygote and homozygote RD3 individuals. The LCA12 phenotype in our patients is highly similar to those of patients with mutant photoreceptor-specific guanylate cyclase (GUCY2D/LCA1). This observation is consistent with the report of the role of RD3 in trafficking of GUCYs and gives further support to a common mechanism of photoreceptor degeneration in LCA12 and LCA1, i.e., inability to increase cytoplasmic cGMP concentration in outer segments and thus to recover the dark-state. Similar to LCA1, LCA12 patients have no extraocular symptoms despite complete inactivation of both RD3 alleles, supporting the view that extraocular investigations in LCA infants with RD3 mutations should be avoided.  相似文献   

14.
RDH12 codes for a member of the family of short-chain alcohol dehydrogenases/reductases proposed to function in the visual cycle that supplies the chromophore 11-cis retinal to photoreceptor cells. Mutations in RDH12 cause severe and progressive childhood onset autosomal-recessive retinal dystrophy, including Leber congenital amaurosis. We generated Rdh12 knockout mice, which exhibited grossly normal retinal histology at 10 months of age. Levels of all-trans and 11-cis retinoids in dark- and light-adapted animals and scotopic and photopic electroretinogram (ERG) responses were similar to those for the wild type, as was recovery of the ERG response following bleaching, for animals matched for an Rpe65 polymorphism (p.L450M). Lipid peroxidation products and other measures of oxidative stress did not appear to be elevated in Rdh12(-/-) animals. RDH12 was localized to photoreceptor inner segments and the outer nuclear layer in both mouse and human retinas by immunohistochemistry. The present findings, together with those of earlier studies showing only minor functional deficits in mice deficient for Rdh5, Rdh8, or Rdh11, suggest that the activity of any one isoform is not rate limiting in the visual response.  相似文献   

15.
16.
17.
In vertebrate rod cells, retinoid dehydrogenases/reductases (RDHs) are critical for reducing the reactive aldehyde all-trans-retinal that is released by photoactivated rhodopsin, to all-trans-retinol (vitamin A). Previous studies have shown that RDH8 localizes to photoreceptor outer segments and is a strong candidate for performing this role. However, RDH12 function in the photoreceptor inner segments is also key, because loss of function mutations cause retinal degeneration in some forms of Leber congenital amaurosis. To investigate the in vivo roles of RDH8 and RDH12, we used fluorescence imaging to examine all-trans-retinol production in single isolated rod cells from wild-type mice and knock-out mice lacking either one or both RDHs. Outer segments of rods deficient in Rdh8 failed to reduce all-trans-retinal, but those deficient in Rdh12 were unaffected. Following exposure to light, a leak of retinoids from outer to inner segments was detected in rods from both wild-type and knock-out mice. In cells lacking Rdh8 or Rdh12, this leak was mainly all-trans-retinal. Wild-type rods incubated with all-trans-retinal reduced moderate loads of retinal within the cell interior, but this ability was lost by cells deficient in Rdh8 or Rdh12. Our findings are consistent with localization of RDH8 to the outer segment where it provides most of the activity needed to reduce all-trans-retinal generated by the light response. In contrast, RDH12 in inner segments can protect vital cell organelles against aldehyde toxicity caused by an intracellular leak of all-trans-retinal, as well as other aldehydes originating both inside and outside the cell.  相似文献   

18.
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber’s congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.  相似文献   

19.
Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.  相似文献   

20.
Retinol dehydrogenase 12 (RDH12) is a microsomal enzyme that catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol when expressed in cells. Mutations in RDH12 cause severe retinal degeneration; however, some of the disease-associated RDH12 mutants retain significant catalytic activity. Our previous study (Lee et al., 2010 [9]) demonstrated that the catalytically active T49M and I51N variants of RDH12 undergo accelerated degradation through the ubiquitin-proteosome system, which results in reduced levels of these proteins in the cells. Here, we investigated whether the stabilization of T49M or I51N RDH12 protein levels through the inhibition of proteosome activity or improved folding could rescue their retinaldehyde reductase activity. For the T49M variant, the inhibition of proteosome activity resulted in an increased level of T49M protein in the microsomal fraction. The higher level of the T49M variant in microsomes correlated with the higher microsomal retinaldehyde reductase activity. T49M-expressing living cells treated with the inhibitors of proteosome activity or with dimethyl sulfoxide exhibited an increase in the conversion of retinaldehyde to retinol, consistent with the recovery of functional RDH12 protein. On the other hand, accumulation of the I51N variant in the microsomes did not result in higher retinaldehyde reductase activity of the microsomes or cells. These results provide a proof of concept that, at least in the case of the T49M variant, the prevention of accelerated degradation could lead to restoration of its function in the cells. This finding justifies further search for more efficient and clinically relevant compounds for stabilizing the T49M variant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号