首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The olfactory ensheathing cell (OEC) is a class of glial cell that has been reported to support regeneration in the central nervous system after various types of lesions, including rhizotomy of spinal dorsal roots at thoracic, lumbar and sacral levels. We have therefore carried out a detailed anatomical analysis to assess the efficacy of dorsal horn OEC transplants at promoting regeneration of primary afferents across the dorsal root entry zone (DREZ) at the cervical level in the adult rat. OECs were cultured from adult rat olfactory bulb and immunopurified (90% purity). Regeneration by large diameter afferents and by both peptidergic and non-peptidergic small diameter afferents was assessed using respectively cholera toxin B (CTB) labelling and immunocytochemistry for calcitonin gene-related peptide (CGRP) and the purinoceptor P2X3. Following an extensive (C3-T3) rhizotomy, CGRP and P2X3 immunoreactive axons regenerated across the rhizotomy site as far as the DREZ but there was no evidence of regeneration across the DREZ, except through sites where the OEC transplant was directly grafted into the DREZ. No evidence of regeneration into the dorsal horn by CTB-labelled axons was obtained. In addition, there was little sign of sprouting by intact axons in the vicinity of OEC transplant sites. In contrast to these results in vivo, cocultures of OECs and adult dorsal root ganglion cells showed that OECs stimulate extensive neurite outgrowth. The failure of the OECs to promote regeneration in vivo following cervical rhizotomy is therefore most likely due to factors in the environment of the graft site and/or the method of transplantation.  相似文献   

3.
4.
The occurrence of calcitonin gene-related peptide (CGRP) and it's mRNA was studied in lungs of rats and piglets using in situ hybridization with two synthetic oligonucleotide probes followed by immunocytochemistry (ICC). CGRP mRNA was present in pulmonary neuroendocrine cells (PNEC) of both the solitary type and cluster type (neuroepithelial body; NEB) at all levels of the airway epithelium from bronchi to alveoli. The distribution of labelled cells was similar to that previously described with ICC. The 44-mer probe provided stronger hybridization signal than the 34-mer and the two combined increased labelling slightly. Formalin fixation reduced labelling and tended to increase background. Labelling for CGRP mRNA was evenly distributed over the cytoplasm, whereas CGRP-like immunoreactivity (LI) usually was of highest intensity toward the base of the PNEC, suggesting basal accumulation of synthesized peptide. CGRP-LI was also observed in occasional rat ganglia and in some, but not all, piglet ganglia. These local neurons may contribute to the CGRP fibers of airways and vasculature, and could theoretically bridge their dendrites and axons between NEB and the effector organ (e.g. artery or arteriole) thus accomplishing a function similar to the postulated axon reflex.  相似文献   

5.
Summary The occurrence of calcitonin gene-related peptide (CGRP) and it's mRNA was studied in lungs of rats and piglets using in situ hybridization with two synthetic oligonucleotide probes followed by immunocytochemistry (ICC). CGRP mRNA was present in pulmonary neuroendocrine cells (PNEC) of both the solitary type and cluster type (neuroepithelial body; NEB) at all levels of the airway epithelium from bronchi to alveoli. The distribution of labelled cells was similar to that previously described with ICC. The 44-mer probe provided stronger hybridization signal than the 34-mer and the two combined increased labelling slightly. Formalin fixation reduced labelling and tended to increase background. Labelling for CGRP mRNA was evenly distributed over the cytoplasm, whereas CGRP-like immunoreactivity (LI) usually was of highest intensity toward the base of the PNEC, suggesting basal accumulation of synthesized peptide. CGRP-LI was also observed in occasional rat ganglia and in some, but not all, piglet ganglia. These local neurons may contribute to the CGRP fibers of airways and vasculature, and could theoretically bridge their dendrites and axons between NEB and the effector organ (e.g. artery or arteriole) thus accomplishing a function similar to the postulated axon reflex.  相似文献   

6.
Olfactory sensory neurons are wrapped by ensheathing glial cells in the olfactory nerve layer (ONL). Neither functional roles nor electrical properties of ensheathing glial cells have been, as yet, fully clarified. Four subunits (SK1–4) of small conductance Ca2+-activated K+ (SK) channels have been cloned. In the present study, immunohistochemical analyses showed that SK3 channels are expressed in ensheathing glial cells in the rat olfactory bulb, in addition to neuronal cells in other regions. Western blotting analysis demonstrated that SK3 was predominantly expressed in the olfactory bulb, thalamus, moderately in the hippocampus and cerebellum and modestly in the cerebral cortex of the rat brain. SK3 immunoreactivity was detected in the ONL of the olfactory bulb, neural cell body and fibers of the substantia nigra and hypothalamus. SK3 immunoreactivity was quite intense in the outer (superficial) part of the ONL. SK3-immunoreactive structures were overlapped with glial fibrillary acidic protein (GFAP), but not with vimentin, markers for glial cells and olfactory sensory axons, respectively. Immunoelectron microscopy showed that SK3 immunoreactivity was localized in thin processes that enfolded fascicles of immunonegative olfactory nerve axons. These results indicate that SK3 is expressed specifically in the olfactory ensheathing glial cells in olfactory regions.This work was supported in part by a Grant-in-Aid to A.F. for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and by scholarship from Ono Pharmaceutical Company, and by Narishige Neuroscience Research Foundation.  相似文献   

7.
Summary In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.  相似文献   

8.
9.
In cultured chicken myotubes, calcitonin gene-related peptide (CGRP), a peptide present in spinal cord motoneurons, increased by 1.5-fold the number of surface acetylcholine receptors (AChRs) and by threefold AChR alpha-subunit mRNA level without affecting the level of muscular alpha-actin mRNA. Cholera toxin (CT), an activator of adenylate cyclase, produced a similar effect, which did not add up with that of CGRP. In contrast, tetrodotoxin, a blocker of voltage-sensitive Na+ channels, elevated the level of AChR alpha-subunit mRNA on top of the increase caused by either CGRP or CT. 12-O-Tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C, markedly decreased the cell surface and total content of [125I]alpha BGT-binding sites and reduced the rate of appearance of AChR at the surface of the myotubes without reducing the level of AChR alpha-subunit mRNA. Moreover, TPA inhibited the increase of AChR alpha-subunit mRNA caused by tetrodotoxin without affecting that produced by CGRP or CT. Under the same conditions, TPA decreased the level of muscular alpha-actin mRNA and increased that of nonmuscular beta- and gamma-actins mRNA. These data suggest that distinct second messengers are involved in the regulation of AChR biosynthesis by CGRP and muscle activity and that these two pathways may contribute to the development of different patterns of AChR gene expression in junctional and extrajunctional areas of the muscle fiber.  相似文献   

10.
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.  相似文献   

11.
Olfactory ensheathing cells: their role in central nervous system repair   总被引:14,自引:0,他引:14  
The olfactory system is an unusual tissue in that it can support neurogenesis throughout life; permitting the in-growth and synapse formation of olfactory receptor axons into the central nervous system (CNS) environment of the olfactory bulb. It is thought that this unusual property is in part due to the olfactory glial cells, termed olfactory ensheathing cells (OECs), but also due to neuronal stem cells. These glial cells originate from the olfactory placode and possess many properties in common with the glial cells from the peripheral nervous system (PNS), Schwann cells. Recent data has suggested that olfactory ensheathing cells are a distinct glial cell type and possess properties, which might make them more suitable for transplant-mediated repair of central nervous system injury models. This paper reviews the biological properties of these cells and illustrates their use in central nervous system repair.  相似文献   

12.
Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.  相似文献   

13.
Field  Pm  Li  Y  Raisman  G 《Brain Cell Biology》2003,32(3):317-324
The ensheathment of the olfactory nerve fibres is achieved by cooperation of two cell types. The olfactory ensheathing cells have a rounded outer surface enclosed in a continuous single basal lamina, and enclose an inner compartment from which overlapping processes of the same and adjacent cells enwrap interweaving territories of tightly apposed aligned axons. The olfactory nerve fibroblasts are highly flattened, dense cells generating multiple layers of very thin processes encircling individual or groups of olfactory ensheathing cells. This paper illustrates the unique ultrastructural features of this ensheathment.  相似文献   

14.
Expression of calcitonin (CT) gene in thyroid parafollicular cells involves alternate formation of CT mRNA or CGRP mRNA. High amounts of CT mRNA are formed only in thyroid gland and formation of CGRP mRNA dominates in the remaining organs. Apart from paracrine and endocrine factors, mRNA formation on the CT gene seems to be affected also by direct contacts with other cells present in the thyroid gland, in which parafollicular cells are located next to follicular cells.The present study aimed at examining whether thyroid follicular cells affect formation of mRNAs for CT and CGRP in parafollicular cells. The studies were performed in cell cultures. A parafollicular cell line (TT cells) and a follicular cell line (F6BTY cells) served as the experimental model. For comparison, co-cultures with fibroblasts, 3T3 cells, and malignant melanoma, MM cells, were also examined. CT gene expression was examined at the level of mRNAs (in situ hybridization and morphometric studies) and at the level of hormones (immunocytochemistry, morphometric studies and radioimmunological estimation of hormone levels in the medium).The immunocytochemical and hybridocytochemical studies, in line with morphometry studies, demonstrated that F6BTY and 3T3 cells were capable of affecting mRNA production for CT and CGRP and that they changed the ratio of CGRP/CT secretion by TT cells, as a sequel of contact between the two cell types and due to mediation of secreted substances. On the other hand, the malignant melanoma MM cells showed no effect on the secretion ratio.Our study seems to indicate that control of mRNA formation from CT gene may involve not only humoral factors but also direct contacts with other cells, which may explain differences in expression of the gene between cells localized in different organs.  相似文献   

15.
The present study was aimed at hybridocytochemical (HCC) detection and interspecies comparison of mRNA for calcitonin (CT), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and somatostatin (SS) in thyroid C cells of two rodent families of wild Microtidae: pine voles and common voles and also of laboratory Muridae, Wistar rats. Studies were performed on adult males. The HCC method in situ and immunomax technique were used to detect mRNA. DNA oligonucleotide probes labeled with digoxigenin were used in the HCC method. The obtained results were compared to the results of immunocytochemical (ICC) examinations, where rabbit or mouse antibodies against human CT, SS, NPY and rat CGRP, as well as chromogranin A were performed. In the present study, HCC reaction has demonstrated the presence of mRNA for CT and CGRP in all thyroid C cells in all the species examined. However, mRNA for NPY and SS was observed in very few C cells in rat and in many more C cells in the two species of wild rodents. The distribution of the positive cells corresponded with that of ICC detected cells.  相似文献   

16.
Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation   总被引:4,自引:0,他引:4  
Calcitonin gene-related peptide (CGRP) is one of the major neuropeptides released from sensory nerve endings and neuroendocrine cells of the lung. Two CGRP isoforms, alpha-and beta-CGRP, have been identified in rats and humans, but no studies have attempted to reveal direct evidence of differences in action or location of these isoforms in allergic inflammation (AI). We investigated mRNA expressions of alpha-and beta-CGRP in lungs, nodose ganglia (NG), and dorsal root ganglia (DRG) of an animal model for AI of the airways, utilizing a model created by sensitizing Brown Norway (BN) rats with ovalbumin (OVA). By semiquantitative RT-PCR analysis, long-lasting enhanced expression of the beta-CGRP mRNA was shown in the lungs of the AI rats (14.5-fold enhancement at 6 hr, 8.1-fold at 24 hr, and 3.7-fold at 120 hr after OVA-challenge compared to the level in the lungs of phosphate-buffered saline (PBS)-challenged control rats). In contrast, the mRNA expression of the alpha-CGRP in AI lungs showed only a transient increase after OVA-challenge (2.7-fold at 6 hr) followed by a lower level of expression (0.5-fold at 48 hr and 0.6-fold at 120 hr). The mRNA expressions of both isoforms in NG, but not in DRG, were transiently up-regulated at 6 hr after antigen challenge. In situ RT-PCR in combination with immunohistochemical analysis revealed that beta-CGRP was expressed in neuroendocrine cells in clusters (termed neuroepithelial bodies [NEBs]) in AI lungs. These results indicate that the long-term induction of beta-CGRP in NEBs may play an important role in pulmonary AI such as bronchial asthma.  相似文献   

17.
Olfactory ensheathing cells (OECs) are the non-myelinating glial cells of the olfactory nerves and bulb. The fragmentary characterization of OECs in situ during normal development may be due to their small size requiring intricate ultrastructural analysis and to the fact that available markers for in situ detection are either expressed only by OEC subpopulations or lost during development. In the present study, we searched for markers with stable expression in OECs and investigated the spatiotemporal distribution of CNPase, an early oligodendrocyte/Schwann cell marker, in comparison with the prototype marker p75NTR. Anti-CNPase antibodies labeled canine but not rat OECs in situ, while Schwann cells and oligodendrocytes were positive in both species. CNPase immunoreactivity in the dog was confined to all OECs throughout the postnatal development and associated with the entire cell body, including its finest processes, while p75NTR was mainly detected in perineural cells and only in some neonatal OECs. Adult olfactory bulb slices displayed CNPase expression after 4 and 10 days, while p75NTR was detectable only after 10 days in vitro. Finally, treatment of purified adult canine OECs with fibroblast growth factor-2 significantly reduced CNPase expression at the protein and mRNA level. Taken together, we conclude that CNPase but not p75NTR is a stable marker suitable for in situ visualization of OECs that will facilitate their light-microscopic characterization and challenge our general view of OEC marker expression in situ. The fact that canine but not rat OECs expressed CNPase supports the idea that glia from large animals differs substantially from rodents.  相似文献   

18.
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin‐2 expressed by ventral‐zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early‐arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal‐zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:828–840, 2013  相似文献   

19.
20.
Calcitonin gene-related peptide (CGRP), a potent vasodilator primarily synthesized in dorsal root ganglia (DRG) neurons, has been shown to decrease vascular resistance and thus regulate blood flow to a variety of organs in rats. Serum CGRP levels in the human have been reported to increase with pregnancy and decrease postpartum. It has been suggested that female sex steroid hormones play a role in cardiovascular function, but the mechanisms are unknown. In this study, we examined the effects of estradiol-17beta (E(2)) and progesterone (P(4)) on the expression of CGRP in DRG in adult rats both in vivo and in vitro. Ovariectomized (ovx) animals were injected s.c. with 5 microg E(2), 4 mg P(4), or 5.0 microg E(2) + 4 mg P(4) in 0.5 ml sesame oil or with oil only, and groups of 4 rats were killed at 0, 24, or 48 h. DRGs were then removed and analyzed for CGRP mRNA and immunoreactive (i-)CGRP content by Northern blotting and RIA, respectively. Primary cultures of DRG neurons from adult female rats were used to assess the effects of varying doses of E(2) (1, 10, 100 nM), P(4) (10, 100, 1000 nM), or E(2) (10 nM) + P(4) (100 nM) in the absence or presence of nerve growth factor (NGF; 20 ng/ml); and CGRP mRNA content in the cells and i-CGRP in the medium were quantitated at 24 or 48 h after incubation. Results of in vivo studies showed that E(2) caused a significant increase in CGRP mRNA at 24 h (1.8-fold) and in i-CGRP levels both at 24 h (2. 8-fold) and at 48 h (3.4-fold) in DRG of ovx rats. P(4) also stimulated expression of both CGRP mRNA and i-CGRP. In the in vitro studies, either E(2) or P(4) alone or the two in combination were without effect on CGRP expression in cultured DRG neurons at all the doses tested. However, in the presence of NGF, both CGRP mRNA and peptide levels were significantly enhanced by E(2), P(4), and E(2)+P(4) in a time-dependent (2.0- to 2.8-fold at 24 h, 3.0- to 5. 0-fold at 48 h) and dose-dependent manner, with maximal effects achieved at 1.0 nM (E(2)) and 100 nM (P(4)) at 24 h of incubation. In summary, both E(2) and P(4), either alone or in combination, stimulate CGRP peptide synthesis in DRG neurons through increasing CGRP mRNA. The effects of these steroid hormones are mediated through amplifying the NGF-induced synthesis of CGRP in these neurons. Thus, we propose that the cardiovascular functions of female sex steroid hormones may be mediated, at least in part, by the up-regulation of neuronal CGRP synthesis, via NGF-mediated mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号