共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction 总被引:1,自引:0,他引:1
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism. 相似文献
2.
CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors 总被引:9,自引:0,他引:9
Evans BN Rosenblatt MI Mnayer LO Oliver KR Dickerson IM 《The Journal of biological chemistry》2000,275(40):31438-31443
It is becoming clear that receptors that initiate signal transduction by interacting with G-proteins do not function as monomers, but often require accessory proteins for function. Some of these accessory proteins are chaperones, required for correct transport of the receptor to the cell surface, but the function of many accessory proteins remains unknown. We determined the role of an accessory protein for the receptor for calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide. We have previously shown that this accessory protein, the CGRP-receptor component protein (RCP), is expressed in CGRP responsive tissues and that RCP protein expression correlates with the biological efficacy of CGRP in vivo. However, the function of RCP has remained elusive. In this study stable cell lines were made that express antisense RCP RNA, and CGRP- and adrenomedullin-mediated signal transduction were greatly reduced. However, the loss of RCP did not effect CGRP binding or receptor density, indicating that RCP did not behave as a chaperone but was instead coupling the CGRP receptor to downstream effectors. A candidate CGRP receptor named calcitonin receptor-like receptor (CRLR) has been identified, and in this study RCP co-immunoprecipitated with CRLR indicating that these two proteins interact directly. Since CGRP and adrenomedullin can both signal through CRLR, which has been previously shown to require a chaperone protein for function, we now propose that a functional CGRP or adrenomedullin receptor consists of at least three proteins: the receptor (CRLR), the chaperone protein (RAMP), and RCP that couples the receptor to the cellular signal transduction pathway. 相似文献
3.
4.
Losman JA Chen XP Hilton D Rothman P 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(7):3770-3774
5.
Intracellular signalling molecules form pathways inside the cell. These pathways carry a signal to target proteins which results
in cellular responses. We consider a spherical cell with two internal compartments containing localized activating enzymes
where as deactivating enzymes are spread uniformly through out the cytosol. Two diffusible signalling molecules are activated
at the compartments and later deactivated in the cytosol due to deactivating enzymes. The two signalling molecules are a single
link in a cascade reaction and form a self regulated dynamical system involving positive and negative feedback. Using matched
asymptotic expansions we obtain approximate solutions of the steady state diffusion equation with a linear decay rate. We
obtain three-dimensional concentration profiles for the signalling molecules. We also investigate an extension of the above
system which has multiple cascade reactions occurring between multiple signalling molecules. Numerically, we show that the
speed of the signal is an increasing function of the number of links in the cascade. 相似文献
6.
Johnson TC Enebo DJ Moos PJ Fattaey HK 《Transactions of the Kansas Academy of Science. Kansas Academy of Science》1992,95(1-2):11-15
Serum stimulation of quiescent human fibroblast cultures resulted in a hyperphosphorylation of the nuclear retinoblastoma gene susceptibility product (RB). However, serum stimulation in the presence of 9 x 10(-8) M of a purified bovine sialoglycopeptide (SGP) cell surface inhibitor abrogated the hyperphosphorylation of the RB protein and the subsequent progression of cells through the mitotic cycle. The experimental results suggest that the SGP mediated its cell cycle arrest at a site in the cell cycle that was at the time of RB phosphorylation or somewhat upstream of the modification of this regulatory protein of cell division. Both cells serum-deprived and serum stimulated in the presence of the SGP displayed only a hypophosphorylated RB protein, consistent with the SGP-mediated cell cycle arrest point being near the G1/S interface. 相似文献
7.
8.
9.
Joshua C. Canzoneri Po C. Chen Adegboyega K. Oyelere 《Bioorganic & medicinal chemistry letters》2009,19(23):6588-6590
We describe herein the synthesis and characterization of a new class of histone deacetylase (HDAC) inhibitors derived from conjugation of a suberoylanilide hydroxamic acid-like aliphatic-hydroxamate pharmacophore to a nuclear localization signal peptide. We found that these conjugates inhibited the histone deacetylase activities of HDACs 1, 2, 6, and 8 in a manner similar to suberoylanilide hydroxamic acid (SAHA). Notably, compound 7b showed a threefold improvement in HDAC 1/2 inhibition, a threefold increase in HDAC 6 selectivity and a twofold increase in HDAC 8 selectivity when compared to SAHA. 相似文献
10.
11.
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function). 相似文献
12.
13.
14.
15.
Li-Yan Wang Zong-Li Diao Dong-Liang Zhang Jun-Fang Zheng Qi-Dong Zhang Jia-Xiang Ding Wen-Hu Liu 《Amino acids》2014,46(12):2693-2704
Epithelial–mesenchymal transition (EMT) of tubular epithelial cells is a key event in renal interstitial fibrosis and the progression of chronic kidney disease (CKD). Apelin is a regulatory peptide involved in the regulation of normal renal hemodynamics and tubular functions, but its role in renal fibrosis remains unknown. In this study, we examined the inhibitory effects of apelin on transforming growth factor-β1 (TGF-β1)-induced EMT in HK-2 cells, and evaluated its therapeutic efficacy in mice with complete unilateral ureteral obstruction (UUO). In vitro, apelin inhibited TGF-β1-mediated upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin. Increased levels of phosphorylated Smad-2/3 and decreased levels of Smad7 in TGF-β1-stimulated cells were reversed by apelin co-treatment. In the UUO model, administration of apelin significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin and laminin expression, and markedly suppressed expression of α-SMA, TGF-β1 and its type I receptor, as well as interstitial matrix components. Interestingly, in UUO mice, there was a reduction in the plasma level of apelin, which was compensated by upregulation of APJ expression in the injured kidney. Exogenous supplementation of apelin normalized the level of plasmatic apelin and renal APJ. In conclusion, our study provides the first evidence that apelin is able to ameliorate renal interstitial fibrosis by suppression of tubular EMT through a Smad-dependent mechanism. The apelinergic system itself may promote some compensatory response in the renal fibrotic process. These results suggest that apelin has potential renoprotective effects and may be an effective agent for retarding CKD progression. 相似文献
16.
Differential inhibition of T cell receptor signal transduction and early activation events by a selective inhibitor of protein-tyrosine kinase 总被引:14,自引:0,他引:14
J M Trevillyan Y L Lu D Atluru C A Phillips J M Bjorndahl 《Journal of immunology (Baltimore, Md. : 1950)》1990,145(10):3223-3230
Engagement of the TCR (CD3-Ti) by Ag/MHC, CD3 mAb, or lectin mitogen stimulates the very early tyrosine phosphorylation of several cellular substrates including TCR-zeta. The T cell specific protein-tyrosine kinase (PTK), p56lck, has been implicated in the tyrosine phosphorylation of TCR-zeta. However, the significance of this event with regard to CD3-Ti signal transduction remains unclear. Herein, we have investigated the effect of the selective PTK inhibitor genistein (4',5,7-trihydroxyisoflavone) on cellular events associated with activation via CD3-Ti triggering. Genistein inhibited the T cell PTK, p56lck, in a dose-dependent fashion with an ID50 = 40 microM. Genistein also inhibited CD3 mAb or PHA-induced TCR-zeta chain phosphorylation in intact peripheral blood T cells. Genistein blocked the expression of IL-2 and IL-2R (CD25) in T cells stimulated with PHA/PMA or CD3 mAb/PMA, but did not inhibit the de novo expression of the CD69 early activation Ag, which is induced primarily by a PKC-dependent pathway. IL-2 and CD25 expression induced by calcium ionophore A23187 and PMA was largely refractory to inhibition by genistein, suggesting an effect of the drug on calcium-dependent pathways stimulated via CD3-Ti triggering. In this last regard, genistein partially inhibited the CD3 mAb-induced rise in [Ca2+]i but did not inhibit PHA- or CD3 mAb-induced phosphatidylinositol hydrolysis. Consequently, protein-tyrosine phosphorylation does not appear to be a prerequisite for CD3-Ti-mediated activation of phosphatidylinositol-specific phospholipase C activity and PIP2 hydrolysis. An alternative role for PTK in CD3-Ti signal transduction is suggested. 相似文献
17.
Wattenberg EV 《American journal of physiology. Cell physiology》2007,292(1):C24-C32
Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated. mitogen-activated protein kinase; dual-specificity phosphatase; prostaglandins; sodium, potassium adenosinetriphosphatase 相似文献
18.
The binding of bactericidal antibiotics like penicillins, cephalosporins, and glycopeptides to their bacterial targets stops bacterial growth but does not directly cause cell death. A second process arising from the bacteria itself is necessary to trigger endogenous suicidal enzymes that dissolve the cell wall during autolysis. The signal and the trigger pathway for this event are completely unknown. Using S. pneumoniae as a model, we demonstrate that signal transduction via the two-component system VncR/S triggers multiple death pathways. We show that the signal sensed by VncR/S is a secreted peptide, Pep27, that initiates the cell death program. These data depict a novel model for the control of bacterial cell death. 相似文献
19.
The Rho-family GTPases Cdc42 and Rac regulate a large number of important cellular processes, including motility, adhesion, proliferation, and survival. Among the key effectors for these GTPases are the p21-activated kinases. Although no specific chemical inhibitor has been developed against these enzymes, an inhibitory peptide derived from the N-terminus of these kinases is able to act in trans to suppress the activity of the full-length kinase. Here, we describe a method to deliver the inhibitory fragment into cells, using the recently described TAT system for protein transduction. This method is easy to use and is effective for transducing many different cell types, including those refractory to standard plasmid transfection. Use of the TAT-based inhibitor provides a specific means to suppress a single group of Cdc42 and Rac effectors, which is useful in analyzing their function. 相似文献