首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we identified KLHL12 as a novel interaction partner of the dopamine D4 receptor that functions as an adaptor in a Cullin3-based E3 ubiquitin ligase complex to target the receptor for ubiquitination. In this study, we show that KLHL12 promotes poly-ubiquitination of the receptor by performing ubiquitination assays in eukaryotic cells. Furthermore, we demonstrate that KLHL12 not only interacts with both immature, ER-associated and mature, plasma membrane-associated D4 receptors, but also promotes ubiquitination of both receptor subpools. Unexpectedly, however, KLHL12-mediated receptor ubiquitination does not promote proteasomal degradation of newly synthesized receptors through the ER-associated degradation pathway or lysosomal degradation of mature receptors. Moreover, our data reveal that D4 receptors do not undergo agonist-promoted ubiquitination or degradation, in contrast to many other G-protein-coupled receptors (GPCRs) indicating that ubiquitination of GPCRs does not defaultly lead to receptor degradation. Interestingly, KLHL12 does also interact with β-arrestin2 but this has no effect on the ubiquitination or localization of β-arrestin2 nor on the internalization of the D4 receptor.  相似文献   

2.

Dopamine D4 Receptor Polymorphism

The dopamine D4 receptor has an important polymorphism in its third intracellular loop that is intensively studied and has been associated with several abnormal conditions, among others, attention deficit hyperactivity disorder.

KLHL12 Promotes Ubiquitination of the Dopamine D4 Receptor on Non-Lysine Residues

In previous studies we have shown that KLHL12, a BTB-Kelch protein, specifically interacts with the polymorphic repeats of the dopamine D4 receptor and enhances its ubiquitination, which, however, has no influence on receptor degradation. In this study we provide evidence that KLHL12 promotes ubiquitination of the dopamine D4 receptor on non-lysine residues. By using lysine-deficient receptor mutants and chemical approaches we concluded that ubiquitination on cysteine, serine and/or threonine is possible.

Differential Ubiquitination of the Dopamine D4 Receptor Polymorphic Variants

Additionally, we show that the dopamine D4.7 receptor variant, which is associated with a predisposition to develop attention deficient hyperactivity disorder, is differentially ubiquitinated compared to the other common receptor variants D4.2 and D4.4. Together, our study suggests that GPCR ubiquitination is a complex and variable process.  相似文献   

3.
Death‐associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)‐induced cell death. How IFN controls DAPK activation remains largely unknown. Here, we identify the BTB–Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch‐repeat domain and BTB domain, respectively. The KLHL20–Cul3–ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20‐mediated DAPK ubiquitination is suppressed in cells receiving IFN‐α or IFN‐γ, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN‐induced autophagy. This study identifies KLHL20–Cul3–ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN‐induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.  相似文献   

4.
Faithful cell-cycle progression is tightly controlled by the ubiquitin-proteasome system. Here we identify a human Cullin 3-based E3 ligase (Cul3) which is essential for mitotic division. In a complex with the substrate-specific adaptors KLHL9 and KLHL13, Cul3 is required for correct chromosome alignment in metaphase, proper midzone and midbody formation, and completion of cytokinesis. This Cul3-based E3 ligase removes components of the chromosomal passenger complex from mitotic chromosomes and allows their accumulation on the central spindle during anaphase. Aurora B directly binds to the substrate-recognition domain of KLHL9 and KLHL13 in vitro, and coimmunoprecipitates with the Cul3 complex during mitosis. Moreover, Aurora B is ubiquitylated in a Cul3-dependent manner in vivo, and by reconstituted Cul3/KLHL9/KLHL13 ligase in vitro. We thus propose that the Cul3/KLHL9/KLHL13 E3 ligase controls the dynamic behavior of Aurora B on mitotic chromosomes, and thereby coordinates faithful mitotic progression and completion of cytokinesis.  相似文献   

5.
Recently, we demonstrated that WNK4 is a substrate for KLHL3–Cullin3 (CUL3) E3 ubiquitin ligase complexes and that impaired WNK4 ubiquitination is a common mechanism for pseudohypoaldosteronism type II (PHAII) caused by WNK4, KLHL3, and CUL3 mutations. Among the various KLHL3 mutations that cause PHAII, we demonstrated that the R528H mutation in the Kelch domain decreased the binding to WNK4, thereby causing less ubiquitination and increased intracellular levels of WNK4. However, the pathogenic mechanisms of PHAII caused by other KLHL3 mutants remain to be determined. In this study, we examined the pathogenic effects of three PHAII-causing mutations in different KLHL3 domains; the protein levels of these mutants significantly differed when they were transiently expressed in HEK293T cells. In particular, S410L expression was low even with increased plasmid expression. The cycloheximide chase assay revealed that an S410L mutation in the Kelch domain significantly decreased the intracellular stability. Mutations in E85A in the BTB domain and C164F in the BACK domain decreased the binding to CUL3, and S410L as well as R528H demonstrated less binding to WNK4. In vitro and in vivo assays revealed that these mutants decreased the ubiquitination and increased the intracellular levels of WNK4 compared with wild-type KLHL3. Therefore, the KLHL3 mutants causing PHAII investigated in this study exhibited less ability to ubiquitinate WNK4 because of KLHL3’s low stability and/or decreased binding to CUL3 or WNK4.  相似文献   

6.
Dishevelled is a conserved protein that interprets signals received by Frizzled receptors. Using a tandem-affinity purification strategy and mass spectrometry we have identified proteins associated with Dishevelled, including a Cullin-3 ubiquitin ligase complex containing the Broad Complex, Tramtrack and Bric à Brac (BTB) protein Kelch-like 12 (KLHL12). This E3 ubiquitin ligase complex is recruited to Dishevelled in a Wnt-dependent manner that promotes its poly-ubiquitination and degradation. Functional analyses demonstrate that regulation of Dishevelled by this ubiquitin ligase antagonizes the Wnt-beta-catenin pathway in cultured cells, as well as in Xenopus and zebrafish embryos. Considered with evidence that the distinct Cullin-1 based SCF(beta-TrCP)complex regulates beta-catenin stability, our data on the stability of Dishevelled demonstrates that two distinct ubiquitin ligase complexes regulate the Wnt-beta-catenin pathway.  相似文献   

7.
Kelch-like 10 (KLHL10) is a member of the BTB (Bric-a-brac, Tramtrack, and Broad-Complex)-kelch protein superfamily essential for spermiogenesis and male fertility. In a search for KLHL10-interacting proteins using a yeast two-hybrid assay, we identified Cullin3 (CUL3) as one of multiple KLHL10-interacting partners. Yeast cotransformation assays revealed that CUL3 bound the BTB/POZ domain of KLHL10. Northern blot and quantitative RT-PCR analyses demonstrated that Cul3 mRNA was preferentially expressed in the testis. In situ hybridization analysis localized Cul3 mRNA to spermatids in the adult testis. CUL3 protein was detected in elongating and elongated spermatids (steps 10-16) by immunofluorescent microscopy. The expression pattern of CUL3 resembles KLHL10. CUL3 was coimmunoprecipated with KLHL10, and KLHL10 was also detected in the CUL3 immunoprecipitants using testis lysates. These findings suggest that KLHL10, like other BTB/kelch proteins, interacts with CUL3 to form a CUL3-based ubiquitin E3 ligase that functions specifically in the testis to mediate protein ubiquitination during spermiogenesis.  相似文献   

8.
Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.  相似文献   

9.
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.  相似文献   

10.
KLHL3 is a BTB-BACK-Kelch family protein that serves as a substrate adapter in Cullin3 (Cul3) E3 ubiquitin ligase complexes. KLHL3 is highly expressed in distal nephron tubules where it is involved in the regulation of electrolyte homeostasis and blood pressure. Mutations in KLHL3 have been identified in patients with inherited hypertension disorders, and several of the disease-associated mutations are located in the presumed Cul3 binding region. Here, we report the crystal structure of a complex between the KLHL3 BTB-BACK domain dimer and two copies of an N terminal fragment of Cul3. We use isothermal titration calorimetry to directly demonstrate that several of the disease mutations in the KLHL3 BTB-BACK domains disrupt the association with Cul3. Both the BTB and BACK domains contribute to the Cul3 interaction surface, and an extended model of the dimeric CRL3 complex places the two E2 binding sites in a suprafacial arrangement with respect to the presumed substrate-binding sites.  相似文献   

11.
Reversible ubiquitination orchestrated by the opposition of ubiquitin ligases and deubiquitinating enzymes mediates endocytic trafficking of cell surface receptors for lysosomal degradation. Ubiquitin-specific protease 8 (USP8) has previously been implicated in endocytosis of several receptors by virtue of their deubiquitination. The present study explores an indirect role for USP8 in cargo trafficking through its regulation of the chemokine receptor 4 (CXCR4). Contrary to the effects of USP8 loss on enhanced green fluorescent protein, we find that USP8 depletion stabilizes CXCR4 on the cell surface and attenuates receptor degradation without affecting its ubiquitination status. In the presence of ligand, diminished CXCR4 turnover is accompanied by receptor accumulation on enlarged early endosomes and leads to enhancement of phospho-ERK signaling. Perturbation in CXCR4 trafficking, resulting from USP8 inactivation, occurs at the ESCRT-0 checkpoint, and catalytic mutation of USP8 specifically targeted to the ESCRT-0 complex impairs the spatial and temporal organization of the sorting endosome. USP8 functionally opposes the ubiquitin ligase AIP4 with respect to ESCRT-0 ubiquitination, thereby promoting trafficking of CXCR4. Collectively, our findings demonstrate a functional cooperation between USP8, AIP4, and the ESCRT-0 machinery at the early sorting phase of CXCR4 and underscore the versatility of USP8 in shaping trafficking events at the early-to-late endosome transition.  相似文献   

12.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

13.
Autosomal recessive juvenile parkinsonism (AR-JP), a common familial form of Parkinson's disease, is caused by mutations of human Parkin. To deepen the understanding of Parkin biology in an in vivo model of Drosophila, we attempted to characterize the function of Drosophila melanogaster Parkin and found that D. melanogaster Parkin exhibited UbcH8-dependent E3 ubiquitin-protein ligase activity. Using E2 binding and in vitro ubiquitination assays, UbcH8 preferentially was found to bind to Parkin mutants harboring functional RING1 domains, but failed to bind to mutants harboring point mutants with complete loss of function. This inability of UbcH8 binding to such mutants was accompanied by abrogation of an E3 ligase activity, indicating that D. melanogaster Parkin as an E3 ligase interacts with UbcH8 through its RING1 domain. An in vivo ubiquitination assay revealed that D. melanogaster Parkin existed in ubiquitinated form in vivo. Moreover, peanut and septin1, D. melanogaster septin proteins, were also ubiquitinated by D. melanogaster Parkin. Co-immunoprecipitation with membrane protein Syntaxin indicated direct binding of septin proteins to syntaxin, implicating their relevance in the exocytosis of dopamine in cells. Western blot analysis and DNA fragmentation indicated that the rate and efficiency of p53-dependent apoptosis were significantly higher in the presence of dopamine than without the septin proteins. Therefore, our findings in the present study demonstrate that Parkin possibly influences septin protein effects on p53-mediated apoptosis, helping to extend the utility of Drosophila as a model system for the study of neurodegeneration.  相似文献   

14.
15.
Cullin-RING ubiquitin ligases are the largest Ubiquitin ligase family in eukaryotes and are multi-protein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. KLHL20 is a substrate-binding subunit of Cullin3 (Cul3) ubiquitin ligase. Recent studies have identified a number of substrates of KLHL20-based ubiquitin ligase. Through ubiquitination of these substrates, KLHL20 elicits diverse cellular functions, some of which are associated with human diseases. Furthermore, the functions, subcellular localizations, and expression of KLHL20 are regulated by several physiological and stressed signals, which allow KLHL20 to preferentially act on certain substrates to response to these signals. Here, we provide a summary of the functions and regulations of KLHL20 in several physiological processes and stress responses and its disease implications.  相似文献   

16.
YY Choo  T Hagen 《PloS one》2012,7(7):e41350
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.  相似文献   

17.
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.  相似文献   

18.
19.
20.
Covalent modification of cullins by the ubiquitin-like protein NEDD8 (neddylation) regulates protein ubiquitination by promoting the assembly of cullin-RING ligase E3 complexes. Like ubiquitination, neddylation results from an enzymatic cascade involving the sequential activity of a dedicated E1 (APPBP1/Uba3), E2 (Ubc12), and an ill-defined E3. We show that SCCRO (also known as DCUN1D1) binds to the components of the neddylation pathway (Cullin-ROC1, Ubc12, and CAND1) and augments but is not required for cullin neddylation in reactions using purified recombinant proteins. We also show that SCCRO recruits Ubc12 approximately NEDD8 to the CAND1-Cul1-ROC1 complex but that this is not sufficient to dissociate or overcome the inhibitory effects of CAND1 on cullin neddylation in purified protein assays. In contrast to findings in cellular systems where no binding is seen, we show that SCCRO and CAND1 can bind to the neddylated Cul1-ROC1 complex in assays using purified recombinant proteins. Although neddylated (not unneddylated) Cul1-ROC1 is released from CAND1 upon incubation with testis lysate from SCCRO+/+ mice, the addition of recombinant SCCRO is required to achieve the same results in lysate from SCCRO(-/-) mice. Combined, these results suggest that SCCRO is an important component of the neddylation E3 complex that functions to recruit charged E2 and is involved in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号