首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of propane-assimilating microorganisms of the genus Rhodococcusto utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus erythropolis3/89 was shown to be an inducible enzyme catalyzing epoxidation and hydroxylation of organic compounds. The optimum conditions for the epoxidation of gaseous and liquid alkenes and the hydroxylation of aromatic carbohydrates were found.  相似文献   

2.
The ability of propane monooxygenase of Rhodococcus erythropolis 3/89 to catalyze oxidation of higher liquid alkenes and aromatic hydrocarbons was studied. Optimal conditions of tetradecene epoxidation and benzene hydroxylation were found. Under these conditions, oxidation was shown to be accompanied by a 100% conversion of benzene to phenol.  相似文献   

3.
The ability of propane monooxygenase ofRhodococcus erythropolis 3/89 to catalyze oxidation of higher liquid alkenes and aromatic hydrocarbons was studied. Optimal conditions of tetradecene epoxidation and benzene hydroxylation were found. Under these conditions, oxidation was shown to be accompanied by a 100% conversion of benzene to phenol.  相似文献   

4.
Cell-free particulate fractions derived from methylotrophic bacteria catalyze the oxygen- and reduced nicotinamide adenine dinucleotide-dependent epoxidation of alkenes and hydroxylation of alkanes. Evidence presented indicates that the hydroxylation and epoxidation reactions are catalyzed by the same or a similar metal-containing monooxygenase.  相似文献   

5.
Over 20 new cultures of methane-utilizing microbes, including obligate (types I and III) and facultative methylotrophic bacteria were isolated. In addition to their ability to oxidize methane to methanol, resting cell-suspensions of three distinct types of methane-grown bacteria (Methylosinus trichosporium OB3b [type II, obligate]; Methylococcus capsulatus CRL M1 NRRL B-11219 [type I, obligate]; and Methylobacterium organophilum CRL-26 NRRL B-11222 [facultative]) oxidize C2 to C4 n-alkenes to their corresponding 1,2-epoxides. The product 1,2-epoxides are not further metabolized and accumulate extracellularly. Methanol-grown cells do not have either the epoxidation or the hydroxylation activities. Among the substrate gaseous alkenes, propylene is oxidized at the highest rate. Methane inhibits the epoxidation of propylene. The stoichiometry of the consumption of propylene and oxygen and the production of propylene oxide is 1:1:1. The optimal conditions for in vivo epoxidation are described. Results from inhibition studies indicate that the same monooxygenase system catalyzes both the hydroxylation and the epoxidation reactions. Both the hydroxylation and epoxidation activities are located in the cell-free particulate fraction precipitated between 10,000 and 40,000 x g centrifugation.  相似文献   

6.
Over 20 new cultures of methane-utilizing microbes, including obligate (types I and III) and facultative methylotrophic bacteria were isolated. In addition to their ability to oxidize methane to methanol, resting cell-suspensions of three distinct types of methane-grown bacteria (Methylosinus trichosporium OB3b [type II, obligate]; Methylococcus capsulatus CRL M1 NRRL B-11219 [type I, obligate]; and Methylobacterium organophilum CRL-26 NRRL B-11222 [facultative]) oxidize C2 to C4 n-alkenes to their corresponding 1,2-epoxides. The product 1,2-epoxides are not further metabolized and accumulate extracellularly. Methanol-grown cells do not have either the epoxidation or the hydroxylation activities. Among the substrate gaseous alkenes, propylene is oxidized at the highest rate. Methane inhibits the epoxidation of propylene. The stoichiometry of the consumption of propylene and oxygen and the production of propylene oxide is 1:1:1. The optimal conditions for in vivo epoxidation are described. Results from inhibition studies indicate that the same monooxygenase system catalyzes both the hydroxylation and the epoxidation reactions. Both the hydroxylation and epoxidation activities are located in the cell-free particulate fraction precipitated between 10,000 and 40,000 x g centrifugation.  相似文献   

7.
The regiospecificity of hydroxylation of C2-halogenated phenols by Rhodococcus opacus 1G was investigated. Oxidative defluorination at the C2 position ortho with respect to the hydroxyl moiety was preferred over hydroxylation at the non-fluorinated C6 position for all 2-fluorophenol compounds studied. Initial hydroxylation of 2,3, 5-trichlorophenol resulted in the exclusive formation of 3, 5-dichlorocatechol. These results indicate that, in contrast to all other phenol ortho-hydroxylases studied so far, phenol hydroxylase from R. opacus 1G is capable of catalyzing preferential oxidative defluorination but also oxidative dechlorination.  相似文献   

8.
MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.  相似文献   

9.
Alkene monooxygenase from Xanthobacter autotrophicus Py2 (XAMO) catalyses the asymmetric epoxidation of a broad range of alkenes. As well as the electron transfer components (a NADH-oxidoreductase and a Rieske-type ferredoxin) and the terminal oxygenase containing the binuclear non-haem iron active site, it requires a small catalytic coupling/effector protein, AamD. The effect of changing AamD stoichiometry and substitution with effector protein homologues on the regioselectivity of toluene hydroxylation and stereoselectivity of styrene epoxidation has been studied. At sub-optimal stoichiometries, there was a marked change in regioselectivity, but no significant change in epoxidation stereoselectivity. Recombinant coupling proteins from a number of phylogenetically related oxygenases were investigated for their ability to functionally replace AamD. Substitution of AamD with IsoD, the coupling protein from the closely related isoprene monooxygenase, changed the regioselectivity of toluene hydroxylation and stereoselectivity of styrene epoxidation, although this was accompanied by a high level of uncoupling. This indicates the importance of coupling protein interaction in controlling the catalytic specificity. Sequence analysis suggests that interaction between Asn34 and Arg57 is important for complementation specificity of the coupling proteins, providing a candidate for site-directed mutagenesis studies.  相似文献   

10.
Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation.  相似文献   

11.
The rabbit liver microsomal P-450 catalyzed oxidation of styrene (1a) and isomeric phenylpropenes, trans-1-phenylpropene (1b), cis-1-phenylpropene (1c) and 3-phenylpropene (1d), was investigated and the enantioselectivity of the epoxidation of the olefinic double bond was determined by checking the enantiomeric excesses of the corresponding first formed epoxides (2). These enantiomeric excesses were always modest, ranging between 7% of (1S,2S)-(2b) and 22% of (1R,2R)-(2c). In the case of (1d) a nonenantioselective hydroxylation at the benzylic-allylic C(3) was also oberved. The ratio between this hydroxylation and olefin epoxidation of (Id) was 1:2.  相似文献   

12.
The rabbit liver microsomal P-450 catalyzed oxidation of styrene (1a) and isomeric phenylpropenes, trans-1-phenylpropene (1b), cis-1-phenylpropene (1c) and 3-phenylpropene (1d), was investigated and the enantioselectivity of the epoxidation of the olefinic double bond was determined by checking the enantiomeric excesses of the corresponding first formed epoxides (2). These enantiomeric excesses were always modest, ranging between 7% of (1S,2S)-(2b) and 22% of (1R,2R)-(2c). In the case of (1d) a nonenantioselective hydroxylation at the benzylic-allylic C(3) was also oberved. The ratio between this hydroxylation and olefin epoxidation of (Id) was 1:2.  相似文献   

13.
In previous publications from this laboratory we have described a soluble, partially purified cytochrome P-450-dependent monooxygenase complex that, in the presence of NADPH and O2, catalyzes the monohydroxylation of long chain fatty acids, alcohols, and amides at the omega -1, omega -2, and omega -3 positions. We have now found that this preparation catalyzes the epoxidation as well as the hydroxylation of palmitoleic acid and a variety of other monounsaturated fatty acids. The experimental results reported here strongly support the concept that both hydroxylation and epoxidation are catalyzed by an identical cytochrome P-450 complex utilizing the same active and binding sites. Furthermore, for saturating levels of these substrates, the rate-limiting step in oxygenation does not appear to involve substrate structure. Thus, although the position and geometry of the double bond may dramatically affect the rate of epoxidation relative to hydroxylation, the combined rate of substrate oxygenation is essentially a constant independent of this ratio. Finally, we propose and present evidence for an enzyme-substrate binding model that involves polar binding of the carboxyl terminus and strong hydrophobic binding and sequestering of the terminal methyl group of the fatty acid. The three methylene carbons adjacent to the methyl group are positioned in a set geometry around the active site but the midchain region of a monounsaturated fatty acid is relatively free to interact or bind loosely with the enzyme surface in a variety of conformations. Depending on fatty acid structure, one or more of these conformations can bring the unsaturated center close enough to the active site to permit epoxidation of the double bond.  相似文献   

14.
The ω-hydroxylase of Pseudomonas oleovorans, which catalyzes the hydroxylation of fatty acids and alkanes and the epoxidation of alkenes in the presence of a reduced pyridine nucleotide, a reductase, rubredoxin, and molecular oxygen, has been purified to electrophoretic homogeneity. Octane hydroxylation and octadiene epoxidation activities appear to remain at a constant ratio during the purification procedure. The hydroxylase has been characterized as a nonheme iron protein containing one iron atom and one cysteine residue per polypeptide chain of molecular weight 40,800. The enzyme is inhibited by cyanide, and activity is restored upon removal of the cyanide by dialysis. Iron is removed from the enzyme by dialysis against EDTA provided that a reducing agent such as dithionite or ascorbate is also added, and enzyme activity is restored by the addition of ferrous ions to the apohydroxylase.  相似文献   

15.
Summary A propane-oxidising strain ofRhodococcus rhodochrous produced 1,2-epoxyalkanes from short chain terminal alkenes at rates equivalent to or greater than many previously described systems. It appeared to produce a single product that was not further metabolised. Its oxygease enzyme also appeared capable of tolerating high levels of product (1 mM) without inhibition. Addition of exogenous reductant did not stimulate epoxidation activity.  相似文献   

16.
Biotransformation of ent-3beta,12alpha-dihydroxy-13-epi-manoyl oxide with Fusarium moniliforme gave the regioselective oxidation of the hydroxyl group at C-3 and the ent-7beta-hydroxylation. The action of Gliocladium roseum in the 3,12-diketoderivative originated monohydroxylations at C-1 and C-7, both by the ent-beta face, while Rhizopus nigricans produced hydroxylation at C-7 or C-18, epoxidation of the double bond, reduction of the keto group at C-3, and combined actions as biohydroxylation at C-2/epoxidation of the double bond and hydroxylation at C-7/reduction of the keto group at C-3. In the ent-3-hydroxy-12-keto epimers, G. roseum originated monohydroxylations at C-1 and C-7 and R. nigricans originated the oxidation at C-3 as a major transformation, epoxidation of double bond and hydroxylation at C-2. Finally, in the ent-3beta-hydroxy epimer R. nigricans also originated minor hydroxylations at C-1, C-6, C-7 and C-20 and F. moniliforme produced an hydroxylation at C-7 and a dihydroxylation at C-7/C-11.  相似文献   

17.
The active intermediates in most heme enzyme-catalyzed oxidations such as epoxidation and hydroxylation have been attributed to the O=Fe(IV) porphyrin ?-cation radical, so-called compound I. This could be correct for many cases, however, alternatives to compound I have been proposed for several oxidations including aliphatic hydroxylation catalyzed by P450. Therefore, two-electron oxidized iron porphyrin complexes other than compound I have been reviewed as candidates for the active species responsible for oxidations catalyzed by heme enzymes.  相似文献   

18.
The epoxidation reaction catalyzed by an enzyme system of Pseudomonas oleovorans exhibits a substrate specificity different from that expected on the basis of chemical reactivity in non-enzymatic epoxidation reactions. Cyclic and internal olefins, aromatic compounds and styrene are not epoxidated. The reactivity of straight chain diolefins is maximal for octadiene and falls off rapidly as the carbon chain is shortened, but decreases only slightly as the chain is lengthened. In contrast, methyl group hydroxylation is less sensitive to decreasing chain length. As a consequence, propylene and 1-butene are hydroxylated but not epoxidated by this enzyme system. With the substrate 1-decene, which is capable of undergoing both epoxidation and hydroxylation, the former reaction predominates. Methyl imidoesters were found to be inhibitors of enzymatic epoxidation, and the potency of a homologous series of imidoester inhibitors was examined. The results parallel the substrate specificity patterns observed, and support the conclusion that the mode of substrate binding severely moderates the inherent chemical reactivity of the activated oxygen in this system. The effect of the bifunctional imidoester, dimethyladipimidate, was also examined and the results compared with those obtained in other investigations.  相似文献   

19.
Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C1 to C8), substituted alkanes, branched-chain alkanes, carbon monoxide, ethers, and cyclic and aromatic compounds. The optimum pH and temperature for the epoxidation of propylene by soluble methane monooxygenase were found to be 7.0 and 40°C, respectively. Among various compounds tested, only NADH2 or NADPH2 could act as an electron donor. Formate and NAD+ (in the presence of formate dehydrogenase contained in the soluble fraction) or 2-butanol in the presence of NAD+ and secondary alcohol dehydrogenase generated the NADH2 required for the methane monooxygenase. Epoxidation of propylene catalyzed by methane monooxygenase was not inhibited by a range of potential inhibitors, including metal-chelating compounds and potassium cyanide. Sulfhydryl agents and acriflavin inhibited monooxygenase activity. Soluble methane monooxygenase was resolved into three components by ion-exchange chromatography. All three compounds are required for the epoxidation and hydroxylation reactions.  相似文献   

20.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号