首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang N  Molina H 《IUBMB life》2000,49(2):109-112
A portion of the mouse complement factor I (mCFI) gene encoding for the mCFI light chain was cloned from a mouse 129/SVJ1 bacterial artificial chromosome library. It contains five exons and four introns. The intron sizes are remarkably different from the human homolog. Several polymorphisms were found in exon 13. One polymorphism was in the coding region, which causes a threonine in the Balb/c mCFI to be replaced by an isoleucine in the 129/SVJ1 mCFI. The other two polymorphisms are located in the 3' untranslated region. The organization of the serine protease domain in mCFI is similar to that of trypsin but very different from that of the other complement serine proteases.  相似文献   

2.
Complete structure of the chicken alpha 2(VI) collagen gene   总被引:4,自引:0,他引:4  
Type VI collagen is a hybrid molecule consisting of a short triple helix flanked by two large globular domains. These globular domains are composed of several homologous repeats which show a striking similarity to the collagen-binding motifs found in von Willebrand factor. The alpha 2(VI) subunit contains three of these homologous repeats termed D1, D2 and D3. We have isolated and characterized the entire gene for chicken alpha 2(VI) collagen. This gene, which is present as a single copy in the chicken genome, is 26 kbp long and comprises 28 exons. All exons can be classified in three groups. (a) The triple-helical domain is encoded by 19 short exons (27-90 bp) separated by introns of phase class 0. These exons are multiples of 9 bp and encode an integral number of collagenous Gly-Xaa-Yaa triplets. (b) The homologous repeats D1-D3 are encoded by one or two very long exons each (153-1578 bp). These exons are separated by introns of phase class 1. (c) The homologous repeats and the collagen sequence are linked to each other by three short adapter segments which are each encoded by a single exon (21-46 bp). The modular nature of the polypeptide is thus clearly reflected by the mosaic structure of its gene. The size of the exons and the phase class of the introns suggest that the alpha 2(VI) gene evolved by duplication and shuffling of two different primordial exons, one of 9 bp encoding a collagen Gly-Xaa-Yaa triplet and one of 600 bp encoding the precursor of the homologous repeats.  相似文献   

3.
We recently reported the isolation and sequencing of human cDNA clones corresponding to the alpha 3 chain of type VI collagen (Chu, M.-L., Zhang, R.-Z., Pan, T.-c., Stokes, D., Conway, D., Kuo, H.-J., Glanville, R., Mayer, U., Mann, K., Deutzmann, R., and Timpl, R. (1990) EMBO J. 9, 385-393). The study indicates that the amino-terminal globular domain of the alpha 3(VI) chain consists of nine repetitive subdomains of approximately 200 amino acid residues (N1-N9) and the gene appeared to undergo alternative splicing since some clones lacked regions encoding the N9 and part of the N3 subdomains. In the present study, we report the exon structure for the region encoding the amino-terminal globular domain of the human alpha 3(VI) chain. The nine repetitive subdomains are encoded by 10 exons spanning 26 kilobase pairs of genomic DNA. Eight of the repetitive subdomains (N2-N9) were found to be encoded by separate exons of approximately 600 base pairs each. The only exception is the N1 subdomain which is encoded by two exons of 417 and 146 base pairs. Characterization of the exon/intron structure showed that the cDNA variants were the result of splicing out of exon 9 (encoding the N9 subdomain) and part of exon 3 (encoding the N3 subdomain). Nuclease S1 analysis and the polymerase chain reaction demonstrated that exon 7 (N7 subdomain) was also subject to alternative splicing in normal skin fibroblasts. Examination of these splicing events by nuclease S1 analysis in normal fibroblasts, three different human tumor cell lines, and several human tissues showed that splicing out of exon 9 is much more efficient in normal as compared to tumor cells.  相似文献   

4.
5.
6.
7.
8.
Thyroid stimulating hormone receptor (TSHR) is thought to play a critical role in the pathogenesis of certain thyroid diseases, including Graves' disease (GD), multinodular thyroid goiter (MTG), and Hashimoto's thyroiditis (HT). In order to understand whether single nucleotide polymorphisms in the TSHR gene contribute to thyroid diseases, we have conducted a case-control study in which, we examined 8 TSHR gene single-nucleotide polymorphisms in introns 1, 4, 5, 6 and exons 7 and 8, respectively, among patients with thyroid diseases. These included one family with GD (3 patients and 9 healthy members); 60 patients with familiar thyroid diseases (30 with GD, 20 with MTG, and 10 with HT patients), 48 sporadic patients with GD and 96 healthy control individuals. Direct sequencing of all 10 exons and part of introns of TSHR gene, in these patients as well as healthy controls revealed eight polymorphisms. A novel polymorphism in exon 8 AGA(Arg) → CGA(Arg). However, there were no significant differences between patients and controls in the incidence of these polymorphisms. These results suggest that the polymorphisms (polymorphism in intron 1 at 81 bp upstream of exon 2; polymorphism in intron 4 at 135 bp upstream of exon 5; polymorphism in intron 4 at 365 bp upstream of exon 5; polymorphism in intron 5 at 69 bp upstream of exon 6; means polymorphism in intron 6 at 13 bp downstream of exon 6; polymorphism in intron 6 at 187 bp upstream of exon 7; E7+16: polymorphism in 16 bp of exon 7; polymorphism in 40 bp of exon 8) of the TSHR gene may not contribute to the pathogenesis of thyroid diseases.  相似文献   

9.
The complete genomic organization of the two mucin genes MUC2 and MUC6 was obtained by comparison of new and published mRNA sequences with newly available human genomic sequence. The two genes are located 38.5 kb apart in a head-to-head orientation within a gene complex on chromosome 11p15.5. The N-terminal organization of MUC6 is highly similar to that of MUC2, containing the D1, D2, D', and D3 Von Willebrand factor domains followed by the large tandem repeat domains located in exons 31 and 30, respectively. MUC6 has a much smaller C-terminal domain (101 amino acids) encoded by 2 exons containing only the CK domain, compared with MUC2, which has a C-terminal domain of 859 amino acids containing the D4, C, D, and CK domains, encoded by 19 exons. The gene structures agreed partially but not completely with predictions from gene prediction programs.  相似文献   

10.
Interspecies comparison and alignment of the beta-casein N-terminal sequence, taking into account its exon modular splitting derived from the known structural organization of the relevant genes, has revealed that a 9 amino acid residue sequence, corresponding to that encoded by the third exon of the other species genes, is lacking in human beta-casein. Using the polymerase chain reaction technique, we have amplified a human genomic 1-kb fragment, spanning from exon 2 to exon 4, which was subsequently cloned and sequenced. One hundred base pairs (bp) upstream from exon 4 and 737 bp downstream of exon 2, a 27-bp virtual exon 3 sequence, probably skipped during the course of pre-mRNA splicing, was identified. We discuss the possibility that this out-splicing event might be due to the weak strength of the 3' acceptor site and/or to the secondary structure sequestering of the branch site sequence.  相似文献   

11.
12.
13.
Structure of the gene for human coagulation factor V.   总被引:22,自引:0,他引:22  
L D Cripe  K D Moore  W H Kane 《Biochemistry》1992,31(15):3777-3785
Activated factor V (Va) serves as an essential protein cofactor for the conversion of prothrombin to thrombin by factor Xa. Analysis of the factor V cDNA indicates that the protein contains several types of internal repeats with the following domain structure: A1-A2-B-A3-C1-C2. In this report we describe the isolation and characterization of genomic DNA coding for human factor V. The factor V gene contains 25 exons which range in size from 72 to 2820 bp. The structure of the gene for factor V is similar to the previously characterized gene for factor VIII. Based on the aligned amino acid sequences of the two proteins, 21 of the 24 intron-exon boundaries in the factor V gene occur at the same location as in the factor VIII gene. In both genes, the junctions of the A1-A2 and A2-A3 domains are each encoded by a single exon. In contrast, the boundaries between domains A3-C1 and C1-C2 occur at intron-exon boundaries, which is consistent with evolution through domain duplication and exon shuffling. The connecting region or B domain of factor V is encoded by a single large exon of 2820 bp. The corresponding exon of the factor VIII gene contains 3106 bp. The 5' and 3' ends of both of these exons encode sequences homologous to the carboxyl-terminal end of domain A2 and the amino-terminal end of domain A3 in ceruloplasmin. There is otherwise no homology between the B domain exons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The alpha 1(VI) and alpha 2(VI) chains, two of the three constituent chains of type VI collagen, are highly similar in size and domain structure. They are encoded by single-copy genes residing in close proximity on human chromosome 21. To study the evolution of the type VI collagen genes, we have isolated and characterized genomic clones coding for the triple-helical domains of the human alpha 1(VI) and alpha 2(VI) chains, which consist of 336 and 335 amino acid residues, respectively. Nucleotide sequencing indicates that, in both genes, the exons are multiples of 9 bp in length (including 27, 36, 45, 54, 63, and 90 bp) except for those encoding for regions with triple-helical interruptions. In addition, the introns are positioned between complete codons. The most predominant exon size is 63 bp, instead of 54 bp as seen in the fibrillar collagen genes. Of particular interest is the finding that the exon structures of the alpha 1(VI) and alpha 2(VI) genes are almost identical. A significant deviation is that a segment of 30 amino acid residues is encoded by two exons of 54 and 36 bp in the alpha 1(VI) gene, but by a single exon of 90 bp in the alpha 2(VI) gene. The exon arrangement therefore provides further evidence that the two genes have evolved from tandem gene duplication. Furthermore, comparison with the previously reported gene structure of the chick alpha 2(VI) chain indicates that the exon structure for the triple-helical domain of the alpha 2(VI) collagen is strictly conserved between human and chicken.  相似文献   

15.
16.
Each of the two Xenopus laevis thyroid hormone receptor beta genes is at least 70 kilobases in length with similar intron-exon organization. There are up to eight alternatively spliced exons in the 5'-untranslated region. Excluding the extreme amino terminus, each receptor is encoded by six exons spanning about 6 kilobases of the genome, in which each of the two zinc fingers that comprise the DNA-binding domain is encoded by a separate exon and the hormone-binding domain is split into three exons. The last exon of the coding region also contains at least 600 base pairs of the 3'-untranslated region, which is about 8 kilobases. Each of the receptor genes has two promoters and just one of them is up-regulated in tadpoles by the administration of thyroid hormone.  相似文献   

17.
We report the complete sequence of the human COL9A3 gene that encodes the alpha3 chain of heterotrimeric type IX collagen, a member of the fibril-associated collagens with interrupted triple helices family of collagenous proteins. Nucleotide sequencing defined over 23,000 base pairs (bp) of the gene and about 3000 bp of the 5'-flanking sequences. The gene contains 32 exons. The domain and exon organization of the gene is almost identical to a related gene, the human COL9A2 gene. However, exon 2 of the COL9A3 gene codes for one -Gly-X-Y- triplet less than exon 2 of the COL9A2 gene. The difference is compensated by an insertion of 9 bp coding for an additional triplet in exon 4 of the COL9A3 gene. As a result, the number of -Gly-X-Y- repeats in the third collagenous domain remains the same in both genes and ensures the formation of an in-register triple helix. In the course of screening this gene for mutations, heterozygosity for separate 9-bp deletions within the COL1 domain were identified in two kindreds. In both instances, the deletions did not co-segregate with any disease phenotype, suggesting that they were neutral variants. In contrast, similar deletions in triple helical domain of type I collagen are lethal. To study whether alpha3(IX) chains with the deletion will participate in the formation of correctly folded heterotrimeric type IX collagen, we expressed mutant alpha3 chains together with normal alpha1 and alpha2 chains in insect cells. We show here that despite the deletion, mutant alpha3 chains were secreted as heterotrimeric, triple helical molecules consisting of three alpha chains in a 1:1:1 ratio. The results suggest that the next noncollagenous domain (NC2) is capable of correcting the alignment of the alpha chains, and this ensures the formation of an in-register triple helix.  相似文献   

18.
Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9) variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with KD of 1.63 nM, comparable to its parental murine D9 (2.55 nM). In a mouse model, intraperitoneal (i.p.) administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.  相似文献   

19.
20.
We have analyzed the structure of the gene coding for the alpha 2(VI) subunit of chicken type VI collagen. The triple-helical domain of this polypeptide is encoded by 19 short exons distributed over 10 kilobase pairs of genomic DNA. These exons begin with the codon for glycine and end with the codon for the Y amino acid of the collagenous triplet Gly-X-Y. The sizes of the exons are integral multiples of 9 base pairs (bp) (27, 36, 45, 54, 63, and 90 bp), the predominant one being 63 bp. The organization of this type VI collagen gene is therefore quite different from that of the fibrillar collagen genes which have evolved by duplication of a primordial 54-bp unit. It also differs from that of the basement membrane collagen genes whose exon/intron boundaries often split the codons for amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号