首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

2.
Measurement of phagocytosis using fluorescent latex beads   总被引:2,自引:0,他引:2  
Fluorescent monodisperse latex beads and a computer-centered spectrofluorimeter were used to devise a sensitive new assay for phagocytosis. LM fibroblasts, a transformed cell line with a high endocytic rate, were exposed to fluoresbrite beads and the following parameters were investigated: incubation time, incubation temperature and bead/cell ratio. The bead uptake was linear for 60 min over a wide range of bead/cell ratios up to 130 beads/cell. Phagocytosis was inhibited at 4 degrees C, by incubation in the presence of colchicine, and by glucose deprivation. Scanning and transmission electron microscopy were used to confirm that at 37 degrees C both bead adsorption and internalization occurred while at 4 degrees C only bead adsorption but not endocytosis occurred. Large bead sizes (0.86 and 1.72 micrometer diameter) were most useful due to higher fluorescence and higher signal to noise ratios than smaller beads (0.25 and 0.57 micrometer diameter). Beads (0.86 micrometer diameter) were taken up at a rate of 4.4 beads/cell/h at 37 degrees C when a bead/cell ratio of 70 was used. The uptake was zero when assayed at zero time. These criteria establish that fluoresbrite beads provide a useful new fluorimetric assay for phagocytosis.  相似文献   

3.
Electron microscopy and serial sections were used to examine the shape of clathrin-coated pits in sinusoidal endothelial cells of rat livers. Livers were perfused at 4 degrees C with either concanavalin A-horseradish peroxidase (conA-HRP), or HRP alone, followed by warm-up to 37 degrees C and fixation with glutaraldehyde. Alternatively, the livers were perfused with HRP at 37 degrees C, followed by fixation. All tissue was preserved using a membrane contrast enhancement technique (R-OTO) consisting of sequential osmium-ferrocyanide, thiocarbohydrazide, and osmium-ferrocyanide treatment. Peroxidase reaction product was used to identify structures participating in endocytosis. One hundred and ninety-three clathrin-coated structures were examined. Sixty-six were from livers perfused with conA-HRP at 4 degrees C, 63 were from livers perfused with only HRP at 4 degrees C, and 64 were from livers perfused with HRP at 37 degrees C. These coated structures were morphologically classified into three categories: (a) flat pits; (b) cup-shaped pits; (c) pits with a narrow neck. No isolated coated vesicles were found. In cells perfused at 4 degrees C followed by warming to 37 degrees C, the percentage of coated pits found connected to the cell surface by narrow necks was 31%, using conA-HRP, and 27% using HRP alone. In cells perfused continuously at 37 degrees C, the percentage of coated pits with narrow neck connections was 21% using HRP alone. These results suggest that the formation of coated pits connected to the surface by narrow necks is not an artifact of cell type, of experimental protocol or of incubation with a lectin.  相似文献   

4.
An assay has been developed to quantitate the binding of beads coated with anti-T cell receptor (TCR) monoclonal antibodies (MoAb) to T lymphocytes. The Ab used were a hamster MoAb, 145.2C11 (2C11), directed against the epsilon chain of the CD3 complex of the murine TCR, and a murine MoAb, F23.1, directed against the V beta 8-encoded determinant of the alpha/beta heterodimer of the TCR. Ab were adsorbed onto polystyrene beads and the beads labeled with [125I]bovine serum albumin [( 125I]BSA). The labeled, Ab-coated beads were mixed at 4 degrees C with murine, cloned T-helper (Th) cells and contact between beads and cells was promoted by centrifugation. The mixtures were incubated at 37 degrees C for 10-20 min, and unbound beads were separated from cell-bound beads by Percoll gradient centrifugation. Beads coated with anti-TCR Ab formed stable conjugates with Th cells; an average of 6-10 2C11 Ab-coated beads/cell, or 10-15 F23.1 Ab-coated beads/cell was measured under optimal conditions. Beads coated with control Ab (hamster or mouse IgG) did not appreciably bind to the cells. Conjugation with 2C11 Ab-coated beads could be prevented by coating the cells with soluble 2C11 Ab, but not with soluble F23.1 Ab. Blocking the CD3 epsilon chain with soluble 2C11 Ab also reduced conjugate formation with F23.1 Ab-coated beads, suggesting a steric hindrance phenomenon. The extent of conjugation depended on the density of immobilized Ab. Maximum conjugation was observed when 100 micrograms of 2C11 Ab was used to coat 10(6) beads; higher Ab amounts did not further increase binding. Increasing the bead to cell ratio in the mixture increased binding, reaching optimal binding at 300:1, irrespectively of the amount of Ab adsorbed onto the beads. Stable binding of anti-TCR Ab-coated beads to T cells was temperature and energy dependent. It was prevented when glucose was removed from the medium and the glycolysis inhibitor, 2-deoxy-D-glucose was added, or when cells were treated with sodium azide. Conjugate formation was prevented by pretreatment of the cells with cytochalasins, indicating that microfilament assembly was essential. Microtubules were not involved, as vinca alkaloids were without effect. This novel assay system provides a simple means of studying aspects of TCR function including its physical and metabolic regulation.  相似文献   

5.
We have examined the shape and distribution of clathrin-coated pits in Swiss 3T3 cells at 4 or 37 degrees C using electron microscopy with serial sections and immunofluorescence light microscopy. Both groups were fixed in glutaraldehyde and preserved further using a membrane contrast enhancement technique consisting of sequential osmium-ferrocyanide, thiocarbohydrazide and osmium-ferrocyanide treatment in situ. Concanavalin A-horseradish peroxidase (conA-HRP) was used to identify these structures participating in endocytosis. Two hundred twenty-two clathrin-coated structures were analysed; 126 from cells fixed at 4 degrees C, and 96 from cells fixed after a 3 min warm-up to 37 degrees C. All coated structures labeled with conA-HRP had demonstrable connections to the plasma membrane. These coated structures were morphologically classified into three categories: (a) flat pits; (b) curved pits; and (c) pits with narrow-neck connections to the plasma membrane. At 37 degrees C, 27% of coated pits had narrow neck connections to the plasma membrane whereas at 4 degrees C only 1% had such connections. Receptosomes (endosomes) labeled with conA-HRP were found only after incubation at 37 degrees C, indicating that active endocytosis was occurring in cells at 37 degrees C, but not at 4 degrees C. Immunofluorescence with anti-clathrin antibody was used to quantitate the number of clathrin-coated pits in Swiss 3T3 cells incubated at 4 and 37 degrees C prior to fixation. No difference was detected. There were 426 +/- 122 pits per cell at 37 degrees C and 441 +/- 106 at 4 degrees C. These results support the hypothesis that formation of a narrow neck connected a coated pit to the cell surface is an early step in the mechanism of receptor-mediated endocytosis.  相似文献   

6.
The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4 degrees C some LDL- or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8 degrees C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37 degrees C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37 degrees C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

7.
The entry of fowl plague virus, and avian influenza A virus, into Madin- Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 degrees C, viruses bound to the cell surface but were not internalized. Binding was not greatly dependent on the pH of the medium and reached an equilibrium level in 60-90 min. Over 90% of the bound viruses were removed by neuraminidase but not by proteases. When cells with prebound virus were warmed to 37 degrees C, part of the virus became resistant to removal b neuraminidase, with a half-time of 10-15 min. After a brief lag period, degraded viral material was released into the medium. The neuraminidase- resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride, a lysosomotropic agent, blocked both the infection and the degradation of viral protein. When the entry process was observed by electron microscopy, viruses were seen bound primarily to microvilli on the cell surface at 0 degrees C and, after warming at 37 degrees C, were endocytosed in coated pits, coated vesicles, and large smooth-surfaced vacuoles. Viruses were also present in smooth-surfaced invaginations and small smooth-surfaced vesicles at both temperatures. At physiological pH, no fusion of the virus with the plasma membrane was observed. When prebound virus was incubated at a pH of 5.5 or below for 1 min at 37 degrees C, fusion was, however, detected by ferritin immunolabeling. t low multiplicity, 90% of the prebound virus became neuraminidase- resistant and was presumably fused after only 30 s at low pH. These experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm. The entry pathway of fowl plague virus thus resembles tht earlier described for Semliki Forest virus.  相似文献   

8.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

9.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

10.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

11.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

12.
The binding of rough LPS (ReLPS from Salmonella minnesota R595) to human peripheral blood polymorphonuclear leukocytes (PMN), monocytes, and lymphocytes was examined by using fluorescein-labeled LPS and flow cytometry. At 4 degrees C, FITC-ReLPS bound rapidly in a concentration- and time-dependent way to PMN, monocytes, and lymphocytes. Because mononuclear cells showed both binding and nonbinding cell populations, FITC-ReLPS was used in conjunction with specific phycoerythrin-labeled mAb to identify these cell subpopulations. In contrast to T lymphocytes and NK cells, all monocytes and B lymphocytes efficiently bound FITC-ReLPS. PMN and monocytes showed two to three times more cell-associated FITC-ReLPS when cells were incubated at 37 degrees C compared with incubation at 4 degrees C. Binding of FITC-ReLPS to lymphocytes was similar for both 4 degrees C and 37 degrees C incubation conditions. In contrast to 4 degrees C, at 37 degrees C cell-associated LPS reflects surface-bound as well as internalized LPS, as demonstrated with fluorescence quenching of extracellular FITC-ReLPS by trypan blue. At 4 degrees C, binding of FITC-ReLPS was inhibited by polymyxin B. In addition, purified IgM mAb directed against hydrophobic acyl residues of ReLPS showed more than 95% inhibition of ReLPS binding to leukocytes, indicating the ability of specific mAb to prevent LPS-cell interactions necessary to exert biologic effects. The use of mAb, directed against different parts of the LPS molecule, provides an alternative method for LPS binding-inhibition studies.  相似文献   

13.
Chinese hamster ovary cells in suspension cultures were heated for various times at 41.5, 43.5, and 45.5 degrees C, and quantitative determinations of microblebbing and macroblebbing of the cell membrane were performed for cells maintained at 4, 25, and 37 degrees C after hyperthermia. The percentage of cells with blebs following heating at 45.5 degrees C was dependent upon the duration of heating with increases from 40% for 5 min to 90% for 30 min. Cells exposed to lower temperatures exhibited less blebbing which was not quantifiable. The changes in bleb formation following 45.5 degrees C were dependent upon the posthyperthermia temperature: a slight decrease of macroblebbing at 25 degrees C, a decrease to 50% by 2 h at 37 degrees C, and a sharp decrease of macroblebbing to less than 10% by 1 h at 4 degrees C. Microblebbing increased slightly at 37 degrees C. When cells were transferred rapidly from the 4 degrees C posthyperthermia incubation to 37 degrees C, the bleb formation percentages returned rapidly to the higher levels which existed before posthyperthermia incubation at the lower temperatures. Gamma irradiation of 20 and 50 Gy produced only a small increase in microblebbing at longer periods (5 to 6 h) but no increase in macroblebbing. The survival of cells heated for 20 min at 45.5 degrees C was decreased 40% for suspension cells maintained at 4 degrees C for 2 to 3 h before incubation at 37 degrees C for colony formation compared to cells immediately incubated at 37 degrees C after heating. The survival of cells maintained at 25 degrees C after heating was not altered in comparison.  相似文献   

14.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

15.
Glycophorin and CD4 proteins are tightly associated with intact human erythrocyte membranes after a short-time incubation at low pH (1-2 min, pH lower than 5, 37 degrees C). Flow cytometry and epifluorescence microscope observations showed that after incubation of red cells with fluorescein isothiocyanate (FITC) labeled glycophorin at pH values lower than 5, the erythrocyte membrane and subsequently formed ghost membranes were fluorescent. Unlabeled glycophorin was reacted with mouse erythrocytes using the same low-pH conditions. Flow cytometry and fluorescence microscopy showed that anti-glycophorin monoclonal antibodies were able to recognize the epitopes of glycophorin associated with the mouse erythrocytes. Kinetic experiments showed that the interaction of FITC-glycophorin with red cell membranes can be monitored by a decrease in the fluorescence intensity. Erythrocyte associated glycophorin was not removed from the membranes after 24 h incubation in human plasma (in vitro, 39 degrees C). A glycoprotein extract containing CD4 was isolated from a T4-lymphoma cell line (CEM). This protein extract was incubated with erythrocytes using the same low-pH conditions. Fluorescently labeled monoclonal antibodies against CD4 stained the red cells after association of CD4 with the membranes. Electron microscopy showed 10 nm immunoglobulin G-coated gold beads associated with CD4-bearing erythrocyte membranes after incubation with anti-CD4 antibodies and then with the gold beads. The potential use of the CD4-erythrocyte complex as a therapeutical agent against acquired immune deficiency syndrome (AIDS) is suggested.  相似文献   

16.
Pegg DE 《Cryobiology》2002,44(1):46-53
This paper reports the cryopreservation of an immortalized human endothelial cell line (ECV304), either as a single cell suspension or as a confluent layer on microcarrier beads. Cell suspensions were exposed to 10% w/w dimethyl sulfoxide in a high-potassium solution (CPTes) at 0 degrees C. The cells were then cooled to -60 degrees C at controlled rates between 0.3 and 500 degrees C/min and stored below -180 degrees C. Samples were thawed in a 37 degrees C water bath and the cryoprotectant was removed by serial dilution at 22 degrees C over 6 min. The recovery of cell suspensions was assayed by culturing aliquots in 24-well plates for 7-9 days and counting the number of colonies that contained >25 cells. Maximum survival was 45-50% at cooling rates of 0.3, 1.0, and 10 degrees C/min, but decreased to 20% at 50 degrees C/min and to <1% at 500 degrees C/min. Biosilon microcarrier beads were used for the attached cells. Confluent beads were cryopreserved by exactly the same technique and cell function was assayed by measuring active amino acid (leucine) transport at 37 degrees C. Control, untreated confluent beads gave approximately 73% of control uptake and negative controls (frozen without cryoprotectant) gave approximately 4% uptake. The cells attached to beads showed percentage uptakes that were numerically similar to the survival of cells in suspension at cooling rates between 10 and 500 degrees C/min, but at lower cooling rates the recovery of attached cells increased to 70% at 1 degrees C/min and to 85% at 0.3 degrees C/min. These results indicate a marked difference in the effect of cooling rate on ECV304 cells depending upon attachment.  相似文献   

17.
Various parameters of the cytolytic reaction mechanisms of the human natural killer (NK) lymphocyte were studied to characterize the lytic cycle. NK cytolysis was determined to occur in three definable steps. 1) Binding of PBL to the NK-sensitive targets Molt-4 or K562 was rapid (less than 1 min), occurred at temperatures below 37 degrees C, was Mg++3-dependent, Ca++3-independent, and was prevented by dispersion of the cells into 10% dextran. 2) Subsequent to binding, programming for lysis as determined by a Ca++ pulse method was more protracted, requiring up to 2 hr to occur and was strictly dependent on Ca++ for cytolysis to proceed. In standard cytotoxicity assays, however, programming for lysis was more rapid occurring in 10 to 30 min. Programming was inhibited by EDTA, EGTA/Mg++ and by temperatures below 37 degrees C. Furthermore, after binding but in the absence of initiation of programming for lysis, the frequency of target binding cells did not change and the NK cell did not lose its lytic potential. 3) Killer cell-independent cytolysis (KCIL) was determined by the addition of EDTA to "programmed" targets and dispersion of these cells into dextran-containing medium, which resulted in virtually 100% dissociation of conjugated cells. KCIL was Ca++ and Mg++-independent and was blocked at reduced temperatures only if the dextran was prechilled to 4 degrees C before addition. The kinetics of 51Cr release during KCIL was rapid and complete 30 min after dispersion. Interferon-activated NK cells expressed an increased rate of cytolysis in Ca++ pulse experiments. This was due to an increased rate of the Ca++-dependent step(s) during the programming events. The rate of the Ca++-independent steps, however, were similar with control and IFN-activated cells.  相似文献   

18.
We have isolated and characterized glycopeptides, derived from mouse and bovine cerebral cortex cells, that inhibit protein synthesis and cell growth of normal but not transformed cells. The inhibitor binds to target cell surfaces, and gangliosides have previously been shown to influence cell sensitivity to the glycopeptides. Preincubation with 3.0 micrograms/ml ganglioside GM1 at 0 degrees C for 3 hr sensitized the mouse L-cell line to the inhibitor, as determined by protein synthesis assays. Preincubation of LM cells with ganglioside GM1 alone did not affect protein synthesis rates. In addition, the gangliosides GD1a and GM3 also sensitized the LM cells to the protein synthesis inhibitory effect of the glycopeptide inhibitor. Binding experiments were performed with 3T3 (sensitive) and LM (insensitive) cells to determine if sensitivity to the glycopeptide inhibitor was reflected in binding of the inhibitor to these cells. Binding of 125I-labeled inhibitor to 3T3 cells was maximal after 60 min at 0 degrees C and saturable at approximately 1 X 10(4) molecules/cell. Furthermore, binding of the inhibitor was dose-dependent, with half-maximal binding at 1.5-2.0 nM and saturation at 8.0-10.0 nM. Scatchard plot analysis indicated that the Kd was about 1 X 10(-9) M and that there are 1 X 10(4) receptors/cell. Binding of the inhibitor to LM cells was maximal after 30 min at 0 degrees C and saturation occurred at 5 X 10(3) molecules/cell. We then examined the possibility that gangliosides are the cellular receptor or co-receptor for the glycopeptide inhibitor. Binding of the inhibitor to ganglioside GM1 was first examined after the ganglioside had been preadsorbed to polystyrene tubes. These experiments indicated that the ganglioside did not bind the inhibitor. Ganglioside-containing liposomes from phosphatidylcholine or LM cell membrane components were also prepared; these artificial membranes did not bind appreciable amounts of the iodinated inhibitor. Competition experiments showed that the gangliosides GM1 and GD1a did not neutralize the protein synthesis inhibitory activity of the glycopeptides, indicating that gangliosides do not directly interact with the glycopeptide inhibitor. In addition, binding of the inhibitor to LM cells preincubated with ganglioside GM1 was studied. Although the binding of the inhibitor to LM cells was one-half that observed for 3T3 cells, incorporation of exogenous gangliosides into LM cells did not result in increased binding of the inhibitor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1. Studies were performed to determine if the inability of murine T cells to provide primary helper function at low temperature (27 degrees C) could be correlated with their inability to synthesize unsaturated fatty acids (UFAs). 2. In the absence of exogenous oleic acid (18:1), splenocytes responded to a T-dependent (TD) Ag (trinitrophenyl-keyhole limpet hemocyanin, TNP-KLH) at 37 degrees C but not at 27 degrees C. The addition of 150 microM 18:1 almost completely restored plaque-forming cell (PFC) responses to TNP-KLH at 27 degrees C but markedly suppressed PFC responses to the TD Ag at 37 degrees C. 3. During incubation at 27 degrees C, B cells converted 3- to 5-fold more stearic acid (18:0) to 18:1 and showed a greater accumulation of monounsaturated phospholipid molecular species than did T cells. 4. Following incubation in the presence of a rescuing dose of 18:1 (150 microM), both B and T cells accumulated large amounts of dioleoyl PC. 5. It is proposed that the absence of 18:1 synthesis in T cells is responsible for the unique low temperature susceptibility of this lymphocyte population.  相似文献   

20.
The interaction between hyperthermia and X irradiation was determined in cultured Reuber H35 hepatoma cells with different states of thermosensitivity. Incubation at 41 degrees C followed by 4-Gy X rays resulted after 2 hr in a stabilization of cell survival for heat or plus X rays, with a maximum synergism factor of 1.6. Thermotolerance did not develop during incubation at 41.7 or 42.5 degrees C. When heat treatment of cells was followed by irradiation, the synergism factor for thermal radiosensitization increased with both the amount of thermal cell killing and the amount of X-ray cell killing; the influence of thermal exposure on the synergism factor was greater than that of the X-ray dose. Cells were made thermotolerant either by incubation at 42.5 degrees C for 30 or 60 min followed by an interval at 37 degrees C, or by continuous incubation at 41 degrees C. In both cases thermotolerance was measured by incubation at 42.5 degrees C. No difference was observed between the maximum thermotolerance achieved with both methods. When cells were irradiated in addition to the second heat treatment, thermal radiosensitization was strongly reduced concomitant with the decreased sensitivity to killing by heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号