首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Disappearance of antigen presenting cells (APC) from the lymph node occurs following antigen specific interactions with T cells. We have investigated the regulation of CD95 (Apo-1/Fas) induced apoptosis during murine dendritic cell (DC) development. Consistent with the moderate levels of CD95 surface expression and low, or absent, MHC class II expression, immature DC in bone marrow cultures were highly sensitive to CD95 induced apoptosis, but insensitive to class II mediated apoptosis. In contrast, mature splenic, epidermal and bone marrow derived DC were fully resistant to CD95 induced cell death, but sensitive to class II induced apoptosis. Although caspase 3 and 8 activation was detected in immature DC undergoing CD95L-induced apoptosis, the pan-caspase inhibitor zVAD-fmk did not inhibit the early events of CD95-induced mitochondrial depolarisation or phosphatidyl serine exposure and only partially inhibited the killing of immature DC. In contrast, zVAD-fmk was completely effective in preventing CD95L mediated death of murine thymocytes. Collectively, these data do not support a major role of CD95: CD95L ligation in apoptosis of mature DC, but rather emphasise the existence of distinct pathways for the elimination of DC at different stages of maturation.  相似文献   

2.
CD95-induced apoptosis contributes to the maintenance of homeostasis in both B and T lymphocyte-mediated immunity. B cells increase CD95 expression in response to activation signals and become susceptible to CD95-induced apoptosis. Protection from CD95-mediated death signals can be induced in mature B cells by signals delivered through the B cell Ag receptor. In this paper we demonstrate for the first time that rescue from apoptosis can occur independently of de novo protein synthesis. This rescue from apoptosis prevents activation of caspase 8, the apical caspase in the CD95 death pathway, and CD95-FADD (Fas-associated death domain containing protein) association does not occur normally. Thus B cell activation signals can biochemically modify proximal elements of the CD95 death pathway and regulate the sensitivity of cells to apoptosis induction at an early stage in programmed cell death.  相似文献   

3.
MHC class II molecules have a crucial role in thymic selection and in generating Ag-specific T cell responses. There is extensive evidence for second messenger generation via MHC class II molecules, which can lead to apoptosis of B lymphocytes. We have examined HLA class II-mediated apoptosis in both normal and tumoral human B lymphocytes. Phosphatidylserine exposure and DNA fragmentation were observed in B cells within 24 h of stimulation via HLA class II. In marked comparison with Fas, the cell-permeable and irreversible caspase inhibitors zVAD-fmk and DEVD-fmk failed to inhibit HLA-DR-mediated apoptosis. No direct activation of caspase 3 was detected, and cleavage of pro-caspase 3 was not observed. Cleavage of poly(ADP-ribose) polymerase was detected via Fas but not via HLA class II. Although phosphatidylinositol-3-kinase has been implicated in HLA class I-mediated apoptosis, neither wortmannin nor LY294002 affected HLA class II-mediated apoptosis. CD95-sensitive cells were used to reveal that death occurred independently of CD95-CD95 ligand interactions. Overall, these data reveal a pathway of HLA-DR-mediated apoptosis that neither requires nor involves caspases. Moreover, it is phosphatidylinositol-3-kinase independent and Fas/CD95 independent. This pathway of HLA class II-mediated apoptosis could have an important role in the regulation of APC populations or in the control of malignant B lymphocyte proliferations.  相似文献   

4.
Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.  相似文献   

5.
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.  相似文献   

6.
Kim MK  Choi YL  Kim MK  Kim SH  Choi EY  Park WS  Bae YM  Woo SK  Park SH 《FEBS letters》2003,546(2-3):379-384
Major histocompatibility complex (MHC) class II surface levels on thymocytes increase after CD99 ligation. The functional implication of the up-regulated MHC class II was assessed by engaging MHC class II on CD99-ligated cells. MHC class II engagement down-modulated surface levels of T cell receptor and MHC molecules, and inhibited apoptosis of CD99-ligated thymocytes and CEM tumor cells, antagonistic effects on the previously reported CD99 functions. The results were reproducible regardless of the order of ligation of MHC class II and CD99. We suggest that signaling via MHC class II on CD99-engaged cells might be involved in the thymic maturation process by damping CD99 ligation effects.  相似文献   

7.
CD4 is a coreceptor on T helper (Th) cells that interacts with MHC class II molecules (MHCII). The mechanisms mediating the effects of CD4 on responses by T helper cells to stimulation of the antigen-specific T cell receptor (TCR) are still poorly understood. Here, we demonstrate T cell costimulation via CD4 signalling independent of T cell receptor-mediated signals. Incubation of T helper cells with peptide mimetics of the CD4-binding region on the MHC class II beta2 domain caused intracellular calcium mobilization in the absence of antigen or other T cell receptor stimuli. Engagement of CD4 by peptide mimetics or wild-type MHC class II, but not by mutant MHC class II molecules incapable of engaging CD4, inhibited the T cell receptor-mediated increase in cyclic AMP (cAMP) concentrations in T helper cells. CD4-mediated signals activated cyclic AMP phosphodiesterases (PDEs) and inhibited adenylyl cyclase. Full activation and clonal expansion of antigen-stimulated T helper cells required the CD4-mediated regulation of cyclic AMP. Our results suggest a costimulatory mechanism of CD4 function that acts on the second messengers, calcium and cyclic AMP.  相似文献   

8.
Regulation of homeostasis in the immune system includes mechanisms that promote survival of resting T lymphocytes, and others that control activation-induced cell death (AICD). In this study, we report on the use of a transgenic mouse model to test the role of CD4-MHC class II interactions for the susceptibility of CD4+ T lymphocytes to AICD, and for the survival of resting CD4+ T cells in peripheral lymphoid organs. The only I-Abeta gene expressed in these mice is an Abetak transgene with a mutation that prevents MHC class II molecules from interacting with CD4. We show increased apoptosis in CD4+ T lymphocytes derived from wild-type, but not from mutant Abetak transgenic mice following stimulation with staphylococcal enterotoxin A. Therefore, AICD may be impaired in CD4+ T cells derived from mutant Abetak transgenic mice. Importantly, we observed much higher apoptosis in resting CD4+ T cells from mutant Abetak transgenic mice than from wild-type mice. Furthermore, resting CD4+ T cells from mutant Abetak transgenic mice expressed higher levels of cell surface CD95 (Fas, APO-1). Ab-mediated cross-linking of CD95 further increased apoptosis in CD4+ T cells from mutant Abetak transgenic mice, but not from wild-type mice, suggesting apoptosis involved CD95 signaling. When cocultured with APC-expressing wild-type MHC class II molecules, apoptosis in resting CD4+ T lymphocytes from mutant Abetak transgenic mice was reduced. Our results show for the first time that interactions between CD4 and MHC class II molecules are required for the survival of resting CD4+ T cells in peripheral lymphoid organs.  相似文献   

9.
Infection by Helicobacter pylori leads to injury of the gastric epithelium and a cellular infiltrate that includes CD4+ T cells. H. pylori binds to class II MHC molecules on gastric epithelial cells and induces their apoptosis. Because urease is an abundant protein expressed by H. pylori, we examined whether it had the ability to bind class II MHC and induce apoptosis in class II MHC-bearing cells. Flow cytometry revealed the binding of PE-conjugated urease to class II MHC+ gastric epithelial cell lines. The binding of urease to human gastric epithelial cells was reduced by anti-class II MHC Abs and by staphylococcal enterotoxin B. The binding of urease to class II MHC was confirmed when urease bound to HLA-DR1-transfected COS-1 (1D12) cells but not to untransfected COS-1 cells. Urease also bound to a panel of B cell lines expressing various class II MHC alleles. Recombinant urease induced apoptosis in gastric epithelial cells that express class II MHC molecules, but not in class II MHC- cells. Also, Fab from anti-class II MHC and not from isotype control Abs blocked the induction of apoptosis by urease in a concentration-dependent manner. The adhesin properties of urease might point to a novel and important role of H. pylori urease in the pathogenesis of H. pylori infection.  相似文献   

10.
The mechanism of tumor-associated T cell dysfunction remains an unresolved problem of tumor immunology. Development of T cell defects in tumor-bearing hosts are often associated with increased production of immature myeloid cells. In tumor-bearing mice, these immature myeloid cells are represented by a population of Gr-1(+) cells. In this study we investigated an effect of these cells on T cell function. Gr-1(+) cells were isolated from MethA sarcoma or C3 tumor-bearing mice using cell sorting. These Gr-1(+) cells expressed myeloid cell marker CD11b and MHC class I molecules, but they lacked expression of MHC class II molecules. Tumor-induced Gr-1(+) cells did not affect T cell responses to Con A and to a peptide presented by MHC class II. In sharp contrast, Gr-1(+) cells completely blocked T cell response to a peptide presented by MHC class I in vitro and in vivo. Block of the specific MHC class I molecules on the surface of Gr-1(+) cells completely abrogated the observed effects of these cells. Thus, immature myeloid cells specifically inhibited CD8-mediated Ag-specific T cell response, but not CD4-mediated T cell response. Differentiation of Gr-1(+) cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells. This may suggest a new approach to cancer treatment.  相似文献   

11.
B cells leave the bone marrow as transitional B cells. Transitional B cells represent a target of negative selection and peripheral tolerance, both of which are abrogated in vitro by mediators of T cell help. In vitro, transitional and mature B cells differ in their responses to B cell receptor ligation. Whereas mature B cells up-regulate the T cell costimulatory molecule CD86 (B7.2) and are activated, transitional B cells do not and undergo apoptosis. The ability of transitional B cells to process and present Ag to CD4 T cells and to elicit protective signals in the absence of CD86 up-regulation was investigated. We report that transitional B cells can process and present Ag as peptide:MHC class II complexes. However, their ability to activate T cells and elicit help signals from CD4-expressing Th cells was compromised compared with mature B cells, unless exogenous T cell costimulation was provided. A stringent requirement for CD28 costimulation was not evident in interactions between transitional B cells and preactivated CD4-expressing T cells, indicating that T cells involved in vivo in an ongoing immune response might rescue Ag-specific transitional B cells from negative selection. These data suggest that during an immune response, immature B cells may be able to sustain the responses of preactivated CD4(+) T cells, while being unable to initiate activation of naive T cells. Furthermore, the ability of preactivated, but not naive T cells to provide survival signals to B cell receptor-engaged transitional immature B cells argues that these B cells may be directed toward activation rather than negative selection when encountering Ag in the context of a pre-existing immune response.  相似文献   

12.
Anergic T cells have immunoregulatory activity and can survive for extended periods in vivo. It is unclear how anergic T cells escape from deletion, because both anergy and apoptosis can occur after TCR ligation. Stimulation of human CD4+ T cell clones reactive to influenza hemagglutinin peptides can occur in the absence of APCs when MHC class II-expressing, activated T cells present peptide to each other. This T:T peptide presentation can induce CD95-mediated apoptosis, while the cells that do not die are anergic. We found that the death after peptide or anti-CD3 treatment of a panel of CD4+ T cell clones is blocked by IFN-beta secreted by fibroblasts and also by IFN-alpha. This increases cell recovery after stimulation, which is not due to T cell proliferation. This mechanism for apoptosis inhibition rapidly stops protein kinase C-delta translocation from the cytoplasm to the nucleus, which is an early event in the death process. A central observation was that CD4+ T cells that are rescued from apoptosis after T:T presentation of peptide by IFN-alphabeta remain profoundly anergic to rechallenge with Ag-pulsed APCs. However, anergized cells retain the ability to respond to IL-2, showing that they are nonresponsive but functional. The prevention of peptide-induced apoptosis in activated T cells by IFN-alphabeta is a novel mechanism that may enable the survival and maintenance of anergic T cell populations after TCR engagement. This has important implications for the persistence of anergic T cells with the potential for immunoregulatory function in vivo.  相似文献   

13.
Placental protein 14 (PP14) is a glycoprotein of the lipocalin family that acts as a negative regulator in T cell receptor-mediated activation. In this study, we investigated PP14s potential role in regulating B cell activation. While PP14-inhibited B cell proliferation, IgM secretion and the surface expression of MHC class II, the expression of other surface molecules, such as CD69 and CD86, were unaffected. These observed effects were independent of the anti-IgM concentration used for stimulation, regardless of the presence of either T cells or IL-4, and persisted when B cells were stimulated by stimuli, which circumvent early events during B cell Ag receptor (BCR) activation, namely, protein kinase C activators in combination with Ca(2+) ionophore. Interestingly, we demonstrated that PP14s inhibitory characteristics are reminiscence of that achieved by independent ligation of CD19 using anti-CD19 mAb. Together with our previously reported effects on T cells, these findings identify PP14 as a soluble regulatory factor capable of interacting with both T and B cells in a carbohydrate-dependent manner and as a result it can affect both cellular and humoral immune responses.  相似文献   

14.
When T cells are activated, the expression of the CD95 ligand is elevated, with the purpose of inducing apoptosis in target cells and to later eliminate the activated T cells. We have shown previously that mitogen-activated protein kinase (MAPK or ERK) signaling suppresses CD95-mediated apoptosis in different cellular systems. In this study we examined whether MAPK signaling controls the persistence and CD95-mediated termination of an immune response in activated T cells. Our results show that activation of Jurkat T cells through the T cell receptor immediately suppresses CD95-mediated apoptosis, and that this suppression is mediated by MAPK activation. During the phase of elevated MAPK activity, the activation of caspase-8 and Bid is inhibited, whereas the assembly of a functional death-inducing signaling complex (DISC) is not affected. These results explain the resistance to CD95 responses observed during the early phase of T cell activation and suggest that MAPK-activation deflects DISC signaling from activating caspase-8 and Bid. The physiological relevance of the results was confirmed in activated primary peripheral T cells, in which inhibition of MAPK signaling markedly sensitized the cells to CD95-mediated apoptosis.  相似文献   

15.
We studied whether CD8 T cell responses that are mediated by unconventional MHC class Ib molecules are IL-15 dependent in mice. CD8(+) T cell responses to Listeria monocytogenes infection that are restricted by the MHC class Ib molecule H2-M3 decreased in the absence of IL-15, whereas other primary MHC class Ib- and MHC class Ia-restricted responses were IL-15 independent. This result was confirmed in MHC class Ia-deficient mice in which IL-15 deficiency also reduced H2-M3-restricted but not all CD8 T cell responses to L. monocytogenes. IL-15 deficiency did not affect proliferation or survival of responding H2-M3-restricted CD8(+) T cells, but IL-15 was necessary to detect H2-M3-restricted CD8(+) T cells in naive mice. This finding suggests that these CD8(+) T cells require IL-15 during development, but become IL-15 independent after activation. IL-15 was necessary for the survival of most class Ib-restricted CD8(+) T cells, starting at the mature thymocyte stage in naive mice, but does not affect a distinct CD44(low)/CD122(low) subpopulation. These data suggest that the nature of the selecting MHC class Ib molecule determines whether CD8(+) T cells acquire IL-15 dependence during thymic development.  相似文献   

16.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

17.
B cells recognize Ag through their surface IgRs and present it in the context of MHC class II molecules to CD4(+) T cells. Recent evidence indicates that B cells also present exogenous Ags in the context of MHC class I to CD8(+) T cells and thus may play an important role in the modulation of CTL responses. However, in this regard, conflicting reports are available. One group of studies suggests that the interaction between B cells and CD8(+) T cells leads to the activation of the T cells, whereas other studies propose that it induces T cell tolerance. For discerning this dichotomy, we used B cells that were activated with either LPS or anti-Ig plus anti-CD40 Ab, which mimic the T-independent and T-dependent modes of B cell activation, respectively, to provide accessory signals to resting CD8(+) T cells. Our results show that, in comparison with anti-Ig plus anti-CD40 Ab-activated B cells, the LPS-activated B cells (LPS-B) failed to induce significant levels of proliferation, cytokine secretion, and cytotoxic ability of CD8(+) T cells. This hyporesponsiveness of CD8(+) T cells activated with LPS-B was significantly rescued by anti-TGF-beta1 Ab. Moreover, it was found that such hyporesponsive CD8(+) T cells activated with LPS-B had entered a state of anergy. Furthermore, LPS-B expresses a significantly higher level of TGF-beta1 on the surface, which caused the observed hyporesponsiveness of CD8(+) T cells. Therefore, this study, for the first time, provides a novel mechanism of B cell surface TGF-beta1-mediated hyporesponsiveness leading to anergy of CD8(+) T cells.  相似文献   

18.
Polysaccharides of pathogenic extracellular bacteria commonly have negatively charged groups or no charged groups at all. These molecules have been considered classic T cell-independent Ags that do not elicit cell-mediated immune responses in mice. However, bacterial polysaccharides with a zwitterionic charge motif (ZPSs), such as the capsular polysaccharides of many strains of Bacteroides fragilis, Staphylococcus aureus, and Streptococcus pneumoniae type 1 elicit potent CD4(+) T cell responses in vivo and in vitro. The cell-mediated response to ZPS depends on the presence of both positively charged and negatively charged groups on each repeating unit of the polysaccharide. In this study, we define some of the requirements for the presentation of ZPS to CD4(+) T cells. We provide evidence that direct interactions of T cells with APCs are essential for T cell activation by ZPS. Monocytes, dendritic cells, and B cells are all able to serve as APCs for ZPS-mediated T cell activation. APCs lacking MHC class II molecules do not support this activity. Furthermore, mAb to HLA-DR specifically blocks ZPS-mediated T cell activation, while mAbs to other MHC class II and class I molecules do not. Immunoprecipitation of lysates of MHC class II-expressing cells following incubation with ZPS shows binding of ZPS and HLA-DR. Electron microscopy reveals colocalization of ZPS with HLA-DR on the cell surface and in compartments of the endocytic pathway. These results indicate that MHC class II molecules expressing HLA-DR on professional APCs are required for ZPS-induced T cell activation. The implication is that binding of ZPS to HLA-DR may be required for T cell activation.  相似文献   

19.
Glutathione peroxidase-1 protects from CD95-induced apoptosis   总被引:9,自引:0,他引:9  
Through the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1). Anti-CD95 antibodies triggered an early generation of ROS in human breast cancer T47D cells that was blocked by overexpression of GPx1 and inhibition of initiator caspase activation. Enforced expression of GPx1 also resulted in inhibition of CD95-induced effector caspase activation, DNA fragmentation, and apoptotic cell death. Resistance to CD95-mediated apoptosis was not due to an increased expression of anti-apoptotic molecules and could be reversed by glutathione-depleting agents. In addition, whereas the anti-apoptotic protein Bcl-xL prevented CD95-induced apoptosis in MCF-7 cells, it did not inhibit the early ROS production. Moreover, Bcl-xL but not GPx1 overexpression could suppress the staurosporine-induced late generation of ROS and subsequent cell death. Altogether, these findings suggest that GPx1 functions upstream of the mitochondrial events to inhibit the early ROS production and apoptosis induced by CD95 ligation. Finally, transgenic mice overexpressing GPx1 were partially protected from the lethal effect of anti-CD95, underlying the importance of peroxide formation (and GPx1) in CD95-triggered apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号