首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unveiling sequence-stability and structure-stability relationships is a major goal of protein chemistry and structural biology. Despite the enormous efforts devoted, answers to these issues remain elusive. In principle, collagen represents an ideal system for such investigations due to its simplified sequence and regular structure. However, the definition of the molecular basis of collagen triple helix stability has hitherto proved to be a difficult task. Particularly puzzling is the decoding of the mechanism of triple helix stabilization/destabilization induced by imino acids. Although the propensity-based model, which correlates the propensities of the individual imino acids with the structural requirements of the triple helix, is able to explicate most of the experimental data, it is unable to predict the rather high stability of peptides embedding Gly-Hyp-Hyp triplets. Starting from the available X-ray structures of this polypeptide, we carried out an extensive quantum chemistry analysis of the mutual interactions established by hydroxyproline residues located at the X and Y positions of the Gly-X-Y motif. Our data clearly indicate that the opposing rings of these residues establish significant van der Waals and dipole-dipole interactions that play an important role in triple helix stabilization. These findings suggest that triple helix stabilization can be achieved by distinct structural mechanisms. The interplay of these subtle but recurrent effects dictates the overall stability of this widespread structural motif.  相似文献   

2.
The variability in amino acid axial rise per residue of the collagen helix is a potentially important parameter that is missing in many structural models of fibrillar collagen to date. The significance of this variability has been supported by evidence from collagen axial structures determined by electron microscopy and X-ray diffraction, as well as studies of the local sequence-dependent conformation of the collagen helix. Here, sequence-dependent variation of the axial rise per residue was used to improve the fit between simulated diffraction patterns derived from model structures of the axially projected microfibrillar structure and the observed X-ray diffraction pattern from hydrated rat tail tendon. Structural models were adjusted using a genetic algorithm that allowed a wide range of structures to be tested efficiently. The results show that variation of the axial rise per residue could reduce the difference metric between model and observed data by up to 50%, indicating that such a variable is a necessary part of fibril model structure building. The variation in amino acid translation was also found to be influenced by the number of proline and hydroxyproline residues in the triple helix structure.  相似文献   

3.
We have studied by X-ray diffraction fibres of complexes of polypurine-polypyrimidine with divalent cations. In the presence of Mg++, poly(dC) and poly(dG) form a very stable triple helix at neutral pH, based on G-G-C triplexes, whereas Zn++ prevents its formation, both at neutral and acidic pH. The poly(dC) . poly(dG) complex with Zn++ is of the B form, but its X-ray diffraction pattern shows an unusual intensity distribution. This is probably due to the fact that counterions occupy defined positions on the helix. The A form has not been observed. With poly[d(A-G)].poly [d(C-T)] a different triple helical structure is formed, both with Zn++ and Mg++. Direct, X-ray diffraction evidence for these triple helices is provided here for the first time.  相似文献   

4.
An effect of 5'-phosphorylation on the stability of triple helical DNA containing pyrimidine:purine:pyrimidine strands has been demonstrated by both gel electrophoresis and UV melting. A 5'-phosphate on the purine-rich middle strand of a triple helix lowers the stability of triple helix formation by approximately 1 kcal/mol at 25 degrees C. The middle strand is involved in both Watson-Crick and Hoogsteen base pairing. In contrast, a 5'-phosphate on the pyrimidine-rich strands, which are involved in either Watson-Crick or Hoogsteen base pairing, has a smaller effect on the stability of triple helix. The order of stability is: no phosphate on either strand > phosphate on both pyrimidine strands > phosphate on purine strand > phosphate on all three strands. Differential stability of triple helix species is postulated to stem from an increase in rigidity due to steric hindrance from the 5'-phosphate. This result indicates that labelling with 32P affect equilibrium in triplex formation.  相似文献   

5.
Fibrillar collagens have an absolute requirement for Gly as every 3rd residue, whereas breaks in the Gly-X-Y repeating pattern are found normally in the triple helix domains of non-fibrillar collagens, such as type IV collagen in basement membranes. In this study, a model 30-mer peptide is designed to include the interruption GPOGAAVMGPOGPO found in the alpha5 chain of type IV collagen. The GAAVM peptide forms a stable triple helix, with Tm= 29 degrees C. When compared with a control peptide with Gly as every 3rd residue, the GAAVM peptide has a marked decrease in the 225 nm maximum of its CD spectrum and a 10 degrees C drop in stability. A 50% decrease in calorimetric enthalpy is observed, which may result from disruption of ordered water structure anchored by regularly placed backbone carbonyls. NMR studies on specific 15N-labeled residues within the GAAVM peptide indicate a normal triple helical structure for Gly-Pro-Hyp residues flanking the break. The sequence within the break is not disordered but shows altered hydrogen exchange rates and an abnormal Val chemical shift. It was previously reported that a peptide designed to model a similar kind of interruption in the peptide (Pro-Hyp-Gly)10, (GPOGPOPOGPO), is unable to form a stable triple helix, and replacement of GAA by GPO or VM by PO within the GAAVM break decreases the stability. Thus, rigid imino acids are unfavorable within a break, despite their favorable stabilization of the triple helix itself. These results suggest some non-random structure typical of this category of breaks in the Gly-X-Y repeat of the triple helix.  相似文献   

6.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Structural alignment is useful in identifying members of ncRNAs. Existing tools are all based on the secondary structures of the molecules. There is evidence showing that tertiary interactions (the interaction between a single-stranded nucleotide and a base-pair) in triple helix structures are critical in some functions of ncRNAs. In this article, we address the problem of structural alignment of RNAs with the triple helix. We provide a formal definition to capture a simplified model of a triple helix structure, then develop an algorithm of O(mn(3)) time to align a query sequence (of length m) with known triple helix structure with a target sequence (of length n) with an unknown structure. The resulting algorithm is shown to be useful in identifying ncRNA members in a simulated genome.  相似文献   

8.
Collagen type IV is a highly specialized form of collagen found only in basement membranes, where it provides mechanical stability and structural integrity to tissues and organs, and binding sites for cell adhesion. In its ubiquitous form, collagen type IV consists of two alpha1 chains and one alpha2 chain, whose internal alignment within the triple helix seems to exert a strong influence on the binding affinity to alpha1beta1 integrin receptor. This has been assessed recently using two synthetic collagen peptides that contain the cell adhesion epitope of collagen type IV and are assembled into the most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. In the present study, the effects of the chain register on the stability of the triple helix and the folding kinetics of these collagen peptides were investigated by CD spectroscopy and microcalorimetry. The results revealed a multi-domain structural organization for both trimers, with an unexpected strong effect of the chain alignment on the conformational stability. Molecular dynamics simulations served to rationalize more properly the experimental results.  相似文献   

9.
三链核酸稳定性和生物学功能的研究进展   总被引:10,自引:1,他引:9  
近10年来三链核酸的研究发展迅猛,已经成为分子生物学和基因工程的一个前沿领域.综述了最近在三链核酸稳定性和生物学功能方面的研究进展.较为详细地讨论了影响三链稳定性的各种内源和外源因素如:寡聚脱氧核苷酸(ODN)的长短 、序列、碱基修饰、骨架结构以及温度、酸度、离子强度 、配基等,同时对三链核酸的生物学功能进行了初步的总结,这些功能包括:控制基因转录,保护靶序列防止酶切,充当分子剪刀进行特定位点切割等.  相似文献   

10.
Little is known about the structural consequences of the more than 20 breaks in the (Gly-X-Y)(n) repeating sequence found in the long triple helix domain of basement membrane type IV collagen. NMR triple resonance studies of doubly labeled residues within a set of collagen model peptides provide distance and dihedral angle restraints that allow determination of model structures of both a standard triple helix and of a triple helix with a break in solution. Although the standard triple helix cannot continue when Gly is not every third residue, the NMR data support rod-like molecules that have standard triple-helical structures on both sides of a well defined and highly localized perturbation. The GAAVM break region may be described as a "pseudo triple helix," because it preserves the standard one-residue stagger of the triple helix but introduces hydrophobic interactions at the position normally occupied by the much smaller and hydrogen-bonded Gly residue of the repeating (Gly-X-Y)(n) sequence. This structure provides a rationale for the consensus presence of hydrophobic residues in breaks of similar length and defines a novel variant of a triple helix that could be involved in recognition.  相似文献   

11.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

12.
The standard collagen triple helix requires Gly as every third residue in the amino acid sequence, yet all nonfibrillar collagens contain sites where this repeating pattern is interrupted. To explore the effects of such natural interruptions on the triple helix, a 4- or 15-residue sequence from human basement membrane type IV collagen was introduced between (Gly-Xaa-Yaa)(n) domains within a recombinant bacterial collagen. The interruptions had little effect on melting temperature, consistent with the high thermal stability reported for nonfibrillar collagens. Although the 4-residue interruption cannot be accommodated within a standard triple helix, trypsin and thermolysin resistance indicated a tightly packed structure. Central residues of the 15-residue interruption were protease-susceptible, whereas residues near the (Gly-Xaa-Yaa)(n) boundary were resistant, supporting a transition from an alternate conformation to a well packed triple helix. Both interruptions led to a delay in triple-helix folding, with the 15-residue interruption causing slower folding than the 4-residue interruption. These results suggest that propagation through interruptions represents a slow folding step. To clarify the relation between natural interruptions and pathological mutations, a Gly to Ser missense mutation was placed three triplets away from the 4-residue interruption. As a result of this mutation, the 4-residue interruption and nearby triple helix became susceptible to protease digestion, and an additional folding delay was observed. Because Gly missense mutations that cause disease are often located near natural interruptions, structural and folding perturbations arising from such proximity could be a factor in collagen genetic diseases.  相似文献   

13.
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.  相似文献   

14.
Collagen is the most abundant protein in mammals and is widely used as a biomaterial for tissue engineering and drug delivery. We previously reported that dendrimers and linear polymers, modified with collagen model peptides (Pro‐Pro‐Gly)5, form a collagen‐like triple‐helical structure; however, its triple helicity needs improvement. In this study, a collagen‐mimic dendrimer modified with the longer collagen model peptides, (Pro‐Pro‐Gly)10, was synthesized and named PPG10‐den. Circular dichroism analysis shows that the efficiency of the triple helix formation in PPG10‐den was much improved over the original. The X‐ray diffraction analysis suggests that the higher order structure was similar to the collagen triple helix. The thermal stability of the triple helix in PPG10‐den was higher than in the PPG10 peptide itself and our previous collagen‐mimic polymers using (Pro‐Pro‐Gly)5. Interestingly, PPG10‐den also assembled at low temperatures. Self‐assembled structures with spherical and rod‐like shapes were observed by transmission electron microscopy. Furthermore, a hydrogel of PPG10‐den was successfully prepared which exhibited the sol‐gel transition around 45°C. Therefore, the collagen‐mimic dendrimer is a potential temperature‐dependent biomaterial. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 270–277, 2011.  相似文献   

15.
Extensive studies on the structure of collagen have revealed that the hydroxylation of Pro residues in a variety of model peptides with the typical (X-Y-Gly)(n) repeats (X and Y: Pro and its analogues) represents one of the major factors influencing the stability of triple helices. While(2S,4R)-hydroxyproline (Hyp) at the position Y stabilizes the triple helix, (2S,4S)-hydroxyproline (hyp) at the X-position destabilizes the helix as demonstrated that the triple helix of (hyp-Pro-Gly)(15) is less stable than that of (Pro-Pro-Gly)(15) and that a shorter peptide (hyp-Pro-Gly)(10) does not form the helix. To clarify the role of the hydroxyl group of Pro residues to play in the stabilization mechanism of the collagen triple helix, we synthesized and crystallized a model peptide (Pro-Hyp-Gly)(4) -(hyp-Pro-Gly)(2) -(Pro-Hyp-Gly)(4) and analyzed its structure by X-ray crystallography and CD spectroscopy. In the crystal, the main-chain of this peptide forms a typical collagen like triple helix. The majority of hyp residues take down pucker with exceptionally shallow angles probably to relieve steric hindrance, but the remainders protrude the hydroxyl group toward solvent with the less favorable up pucker to fit in a triple helix. There is no indication of the existence of an intra-molecular hydrogen bond between the hydroxyl moiety and the carbonyl oxygen of hyp supposed to destabilize the triple helix. We also compared the conformational energies of up and down packers of the pyrrolidine ring in Ac-hyp-NMe(2) by quantum mechanical calculations.  相似文献   

16.
The gelatin film is stretched more 100% over 75% relative humidity, while the dried gelatin extended only several percent. In this experiment the gelatin film was stretched in a solution of water and ethanol. The sample was extended to 650% of its initial length when ethanol/water was 1.5(w/w) at 30°C. The wide-angle X-ray diffraction photographs of drawn samples showed the three important layer lines with approximate spacing of 10 Å, 4 Å, and 3 Å, which verify the reconstitution of collagen triple helical structure. The sharp spots appeared near 10 Å on the equatirial axis, indicating the high orientation of peptide chains. These patterns become sharp and clear on increasing the extension ratio. The content of the triple helix was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. The maximum renaturation percentage is 25% at the draw ratio of 7.5. Since the formation of a collagen triple helix requires three chains, in which each chain has only three repeatin amino acids, (Gly-Pro-X)n, and glycoprotein and other impurities interrupt helix formation, the more advanced renaturation will not be expected.  相似文献   

17.
The triple helix is a specialized protein motif, found in all collagens as well as in noncollagenous proteins involved in host defense. Peptides will adopt a triple-helical conformation if the sequence contains its characteristic features of Gly as every third residue and a high content of Pro and Hyp residues. Such model peptides have proved amenable to structural studies by x-ray crystallography and NMR spectroscopy, suitable for thermodynamic and kinetic analysis, and a valuable tool in characterizing the binding activities of the collagen triple helix. A systematic approach to understanding the amino acid sequence dependence of the collagen triple helix has been initiated, based on a set of host-guest peptides of the form, (Gly-Pro-Hyp)(3)-Gly-X-Y-(Gly-Pro-Hyp)(4). Comparison of their thermal stabilities has led to a propensity scale for the X and Y positions, and the additivity of contributions of individual residues is now under investigation. The local and global stability of the collagen triple helix is normally modulated by the residues in the X and Y positions, with every third position occupied by Gly in fibril-forming collagens. However, in collagen diseases, such as osteogenesis imperfecta, a single Gly may be substituted by another residue. Host-guest studies where the Gly is replaced by various amino acids suggest that the identity of the residue in the Gly position affects the degree of destabilization and the clinical severity of the disease.  相似文献   

18.
斜顶菌水溶性多糖的构象研究   总被引:1,自引:0,他引:1  
根据光散射法与粘度法对斜顶菌(Clitopilus Caespitosus PK)多糖在水中与在二甲亚砜中的分子量所进行的对比测定(3:1)以及由多糖水溶液可与刚果红形成络合物的实验结果,推测此多糖在水中是三股螺旋构象,而在DMSO中是单股螺旋。在H_2O—DMSO混合溶剂体系中,体积分数φH_2O降至0.18后,三股螺旋解体为单股螺旋,这种解离具有可逆性。变性剂如脲、酸、碱与高温等条件均因破坏氢键而影响构象的变化。用X射线粉末衍射,确定多糖具有规整有序并有重复性的空间结构。  相似文献   

19.
Collagen forms a characteristic triple helical structure and plays a central role for stabilizing the extra-cellular matrix. After a C-terminal nucleus formation folding proceeds to form long triple-helical fibers. The molecular details of triple helix folding process is of central importance for an understanding of several human diseases associated with misfolded or unstable collagen fibrils. However, the folding propagation is too rapid to be studied by experimental high resolution techniques. We employed multiple Molecular Dynamics simulations starting from unfolded peptides with an already formed nucleus to successfully follow the folding propagation in atomic detail. The triple helix folding was found to propagate involving first two chains forming a short transient template. Secondly, three residues of the third chain fold on this template with an overall mean propagation of ~75 ns per unit. The formation of loops with multiples of the repeating unit was found as a characteristic misfolding event especially when starting from an unstable nucleus. Central Gly→Ala or Gly→Thr substitutions resulted in reduced stability and folding rates due to structural deformations interfering with folding propagation.  相似文献   

20.
The standard collagen triple‐helix requires a perfect (Gly‐Xaa‐Yaa)n sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1‐ and 4‐residue interruptions showed a localized perturbation within the triple‐helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly‐Pro‐Hyp)n peptide context. All peptides in this set show decreases in triple‐helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5‐residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple‐helix peptides containing 8‐ and 9‐residue interruptions exhibit a strong propensity for self‐association to fibrous structures. In addition, a small peptide modeling only the 9‐residue sequence within the interruption aggregates to form amyloid‐like fibrils with antiparallel β‐sheet structure. The 8‐ and 9‐residue interruption sequences studied here are predicted to have significant cross‐β aggregation potential, and a similar propensity is reported for ~10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple‐helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号