首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Mechanical unfolding of proteins using atomic force microscopy is becoming a routine biophysical technique. Mechanistic investigations in this rapidly evolving field are beginning to resolve the factors that contribute to the behaviour of biological macromolecules under force. Here we describe the force-mode apparatus, the experimental set-up, tractable systems of study, and the analysis of the resultant force data. Finally we summarise some of the recent achievements and limitations of this technique.  相似文献   

2.
Müller DJ  Engel A 《Nature protocols》2007,2(9):2191-2197
Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.  相似文献   

3.
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.  相似文献   

4.
5.
Atomic force microscopy and chemical force microscopy of microbial cells   总被引:1,自引:0,他引:1  
Dufrêne YF 《Nature protocols》2008,3(7):1132-1138
Over the past years, atomic force microscopy (AFM) has emerged as a powerful tool for imaging the surface of microbial cells with nanometer resolution, and under physiological conditions. Moreover, chemical force microscopy (CFM) and single-molecule force spectroscopy have enabled researchers to map chemical groups and receptors on cell surfaces, providing valuable insight into their structure-function relationships. Here, we present protocols for analyzing spores of the pathogen Aspergillus fumigatus using real-time AFM imaging and CFM. We emphasize the use of porous polymer membranes for immobilizing single live cells, and the modification of gold-coated tips with alkanethiols for CFM measurements. We also discuss recording conditions and data interpretation, and provide recommendations for reliable experiments. For well-trained AFM users, the entire protocol can be completed in 2-3 d.  相似文献   

6.
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico‐Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM—confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.  相似文献   

7.
We have used an in vitro system that mimics the assembly of immature Moloney murine leukemia virus (M-MuLV) particles to examine how viral structural (Gag) proteins oligomerize at membrane interfaces. Ordered arrays of histidine-tagged Moloney capsid protein (his-MoCA) were obtained on membrane bilayers composed of phosphatidylcholine (PC) and the nickel-chelating lipid 1, 2-di-O-hexadecyl-sn-glycero-3-(1'-2"-R-hydroxy-3'N-(5-amino-1-carboxy pentyl)iminodiacetic acid)propyl ether (DHGN). The membrane-bound arrays were analyzed by electron microscopy (EM) and atomic force microscopy (AFM). Two-dimensional projection images obtained by EM showed that bilayer-bound his-MoCA proteins formed cages surrounding different types of protein-free cage holes with similar cage holes spaced at 81.5-A distances and distances between dissimilar cage holes of 45.5 A. AFM images, showing topological features viewed near the membrane-proximal domain of the his-MoCA protein, revealed a cage network of only symmetrical hexamers spaced at 79-A distances. These results are consistent with a model in which dimers constitute structural building blocks and where membrane-proximal and distal his-MoCA regions interact with different partners in membrane-bound arrays.  相似文献   

8.
9.
In mammals and plants, the cell nucleus is organized in dynamic macromolecular domains involved in DNA and RNA metabolism. These domains can be visualized by light and electron microscopy and their composition analyzed by using several cytochemical approaches. They are composed of chromatin or ribonucleoprotein structures as interchromatin and perichromatin fibers and granules, coiled bodies, and nuclear bodies. In plants, DNA arrangement defines chromocentric and reticulated nuclei. We used atomic force microscopy to study the in situ structure of the plant cell nucleus. Samples of the plants Lacandonia schismatica and Ginkgo biloba were prepared as for electron microscopy and unstained semithin sections were mounted on glass slides. For comparison, we also examined entire normal rat kidney cells using the same approach. Samples were scanned with an atomic force microscope working in contact mode. Recognizable images of the nuclear envelope, pores, chromatin, and nucleolus were observed. Reticulated chromatin was observed in L. schismatica. Different textures in the nucleolus of G. biloba were also observed, suggesting the presence of nucleolar subcompartments. The observation of nuclear structure in situ with the atomic force microscope offers a new approach for the analysis of this organelle at high resolution.  相似文献   

10.
Leukocyte adhesion to vascular endothelium is a key initiating step in the pathogenesis of many inflammatory diseases. In this study, we present real-time force measurements of the interaction between monocytic human promyelocytic leukemia cells (HL-60) cells and a monolayer of human umbilical vein endothelial cells (HUVECs) by using atomic force microscopy (AFM). The detachment of HL-60-HUVEC conjugates involved a series of rupture events with force transitions of 40-100 pN. The integrated force of these rupture events provided a quantitative measure of the adhesion strength on a whole cell level. The AFM measurements revealed that HL-60 adhesion is heightened in the borders formed by adjacent HUVECs. The average force and mechanical work required to detach a single HL-60 from the borders of a tumor necrosis factor-alpha-activated HUVEC layer were twice as high as those of the HUVEC bodies. HL-60 adhesion to the monolayer was significantly reduced by a monoclonal antibody against beta1-integrins and partially inhibited by antibodies against selectins ICAM-1 and VCAM-1 but was not affected by anti-alphaVbeta3. Interestingly, adhesion was also inhibited in a dose-dependent manner (IC50 approximately 100 nM) by a cyclic arginine-glycine-aspartic acid (cRGD) peptide. This effect was mediated via interfering with the VLA-4-VCAM-1 binding. In parallel measurements, transmigration of HL-60 cells across a confluent HUVEC monolayer was inhibited by the cRGD peptide and by both anti-beta1 and anti-alphaVbeta3 antibodies. In conclusion, these data demonstrate the role played by beta1-integrins in leukocyte-endothelial adhesion and transmigration and the role played by alphaVbeta3 in transmigration, thus underscoring the high efficacy of cRGD peptide in blocking both the adhesion and transmigration of monocytes.  相似文献   

11.
Atomic force microscopy of DNA molecules.   总被引:8,自引:0,他引:8  
J Yang  K Takeyasu  Z Shao 《FEBS letters》1992,301(2):173-176
DNA-cytochrome c complexes adsorbed on carbon-coated mica surfaces were directly imaged by atomic force microscopy in air using commercially available cantilevers, with a routine resolution of 6 nm. Images of M13 phage DNA and M13-DNA polymerase complex are also shown.  相似文献   

12.
Atomic force microscopy of mammalian sperm chromatin   总被引:6,自引:0,他引:6  
We have used the atomic force microscope (AFM) to image the surfaces of intact bull, mouse and rat sperm chromatin and partially decondensed mouse sperm chromatin attached to coverglass. High resolution AFM imaging was performed in air and saline using uncoated, unfixed and unstained chromatin. Images of the surfaces of intact chromatin from all three species and of an AFM-dissected bull sperm nucleus have revealed that the DNA is organized into large nodular subunits, which vary in diameter between 50 and 100 nm. Other images of partially decondensed mouse sperm chromatin show that the nodules are arranged along thick fibers that loop out away from the nucleus upon decondensation. These fibers appear to stretch or unravel, generating narrow smooth fibers with thicknesses equivalent to a single DNA-protamine complex. High resolution AFM images of the nodular subunits suggest that they are discrete, clipsoid-shaped DNA packaging units possibly only one level of packaging above the protamine-DNA complex.  相似文献   

13.
Atomic force microscopy study of tooth surfaces   总被引:6,自引:0,他引:6  
Atomic force microscopy (AFM) was used to study tooth surfaces in order to compare the pattern of particle distribution in the outermost layer of the tooth surfaces. Human teeth and teeth from a rodent (Golden hamster), from a fish (piranha), and from a grazing mollusk (chiton) with distinct feeding habits were analyzed in terms of particle arrangement, packing, and size distribution. Scanning electron microscopy and transmission electron microscopy were used for comparison. It was found that AFM gives high-contrast, high-resolution images and is an important tool as a source of complementary and/or new structural information. All teeth were cleaned and some were etched with acidic solutions before analysis. It was observed that human enamel (permanent teeth) presents particles tightly packed in the outer surface, whereas enamel from the hamster (continuously growing teeth) shows particles of less dense packing. The piranha teeth have a thin cuticle covering the long apatite crystals of the underlying enameloid. This cuticle has a rough surface of particles that have a globular appearance after the brief acidic treatment. The similar appearance of the in vivo naturally etched tooth surface suggests that the pattern of globule distribution may be due to the presence of an organic material. Elemental analysis of this cuticle indicated that calcium, phosphorus, and iron are the main components of the structure while electron microdiffraction of pulverized cuticle particles showed a pattern consistent with hydroxyapatite. The chiton mineralized tooth cusp had a smooth surface in an unabraded region and a very rough structure with the magnetite crystals (already known to make part of the structure) protruding from the surface. It was concluded that the structures analyzed are optimized for efficiency in feeding mechanism and life span of the teeth.  相似文献   

14.
Supported lipid bilayers (SLBs) are widely used in biophysical research to investigate the properties of biological membranes and offer exciting prospects in nanobiotechnology. Atomic force microscopy (AFM) has become a well-established technique for imaging SLBs at nanometer resolution. A unique feature of AFM is its ability to monitor dynamic processes, such as the interaction of bilayers with proteins and drugs. Here, we present protocols for preparing dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers supported on mica using small unilamellar vesicles and for imaging their nanoscale interaction with the antibiotic azithromycin using AFM. The entire protocol can be completed in 10 h.  相似文献   

15.
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.  相似文献   

16.
Atomic force microscopy of liposomes bearing fibrinogen   总被引:1,自引:0,他引:1  
Extruded liposomes formed from dipalmitoylphosphatidylcholine and cholesterol, with and without fibrinogen, were examined by atomic force microscopy (AFM). The sequence of events involved in the transition from attached liposomes to bilayer patches on mica supports was viewed by tapping mode in liquid. After adhesion to the mica surface, both liposomes without fibrinogen and liposomes with attached fibrinogen collapsed into patches. The fibrinogen layer attached to the liposomes was 2.6 nm thick. This implied that the protein was spread over the entire liposome and the protein characteristic trinodular structure disappeared. To check the type of bond between fibrinogen and liposome, sequential images were taken after the incubation of fibrinogen with liposomes with and without a chemical group for attaching the protein. The results clearly confirmed that fibrinogen bound covalently to liposomes.  相似文献   

17.
Atomic force microscopy of macromolecular interactions.   总被引:4,自引:0,他引:4  
The introduction of functional imaging tools and techniques that operate at molecular-length scales has provided investigators with unique approaches to characterizing biomolecular structure and function relationships. Recent advances in the field of scanning probe techniques and, in particular, atomic force microscopy have yielded tantalizing insights into the dynamics of protein self-assembly and the mechanics of protein unfolding.  相似文献   

18.
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.  相似文献   

19.
In this review, I describe the biological applications of the atomic force microscope (AFM). The historical background and the development of the microscope are described. The AFM can operate in many different modes relevant to biological systems including topography, chemical analysis, and forces relevant at the biological length scale (single cell to DNA dimensions and pico to nano Newton forces). A limited number of examples from the literature are described to illustrate some of the many capabilities of this microscope. The aim is to give an introduction of the technique to the inexperienced in this rapidly growing field.  相似文献   

20.
Atomic force microscopy of single- and double-stranded DNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
A method has been developed for imaging single-stranded DNA with the atomic force microscope (AFM). phi X174 single-stranded DNA in formaldehyde on mica can be imaged in the AFM under propanol or butanol or in air. Measured lengths of most molecules are on the order of 1 mu, although occasionally more extended molecules with lengths of 1.7 to 1.9 mu are seen. Single-stranded DNA in the AFM generally appears lumpier than double-stranded DNA, even when extended. Images of double-stranded lambda DNA in the AFM show more sharp kinks and bends than are typically observed in the electron microscope. Dense, aggregated fields of double-stranded plasmids can be converted by gentle rinsing with hot water to well spread fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号