首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the molecular mechanism of toxicity of 1-methyl-4-phenylpyridinium (MPP+), an ultimate toxic metabolite of a mitochondrial neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, that causes parkinsonism in experimental animals and humans. Using wild-type and human neuronal nitric oxide synthase (nNOS) stably transfected neuroblastoma cells (SH-SY5Y), we showed that nNOS overexpression in SH-SY5Y cells greatly enhanced proteasome activity and mitigated MPP+-induced apoptosis. During MPP+-induced oxidative stress, intracellular BH4 levels decreased, resulting in nNOS "uncoupling" (i.e., switching from nitric oxide to superoxide generation). Increasing the intracellular BH4 levels by sepiapterin supplementation restored the nNOS activity, inhibited superoxide formation, increased proteasome activity, decreased protein ubiquitination, and attenuated apoptosis in MPP+-treated cells. Implications of BH4 depletion in dopaminergic cells and sepiapterin supplementation to augment the striatal nNOS activity in the pathogenesis mechanism and treatment of Parkinson disease are discussed.  相似文献   

2.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   

3.
Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype.  相似文献   

4.
Salvianolic acid A (Sal A) is a polyphenol extracted from the root of the Salvia miltiorrhiza bunge. Hydrogen peroxide (H(2)O(2)) is a major reactive oxygen species (ROS), which has been implicated in stroke and other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neuroprotective effects of Sal A in human SH-SY5Y neuroblastoma cells against H(2)O(2)-induced injury. Our results showed that cells pretreated with Sal A exhibited enhanced neuronal survival and that this protection was associated with an increase in adenosine triphosphate (ATP) and the stabilization of mitochondrial membrane potential. In addition, Sal A markedly decreased the excessive activation AMP-activated protein kinase (AMPK) and the serine-threonine protein kinase, Akt, in SH-SY5Ycells induced by H(2)O(2). In conclusion, our results demonstrated that Sal A protects SH-SY5Y cells against H(2)O(2)-induced oxidative stress and these protective effects are related to stress tolerance and not energy depletion via inhibition of the AMPK and Akt signaling pathway.  相似文献   

5.
Proteasome modulates mitochondrial function during cellular senescence   总被引:1,自引:0,他引:1  
Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidence that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype, and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence has significant effects on intra- and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production, and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a prooxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo.  相似文献   

6.
Protein aggregation has been proved to be a pathological basis accounting for neuronal death caused by either transient global ischemia or oxygen glucose deprivation (OGD), and inhibition of protein aggregation is emerging as a potential strategy of preventing brain damage. Trehalose was found to inhibit protein aggregation caused by neurodegenerative diseases via induction of autophagy, whereas its effect is still elusive on ischemia-induced protein aggregation. In this study, we investigated this issue by using rat model of transient global ischemia and SH-SY5Y model of OGD. We found that pretreatment with trehalose inhibited transient global ischemia-induced neuronal death in the hippocampus CA1 neurons and OGD-induced death in SH-SY5Y cells, which was associated with inhibition of the formation of ubiquitin-labeled protein aggregates and preservation of proteasome activity. In vitro study showed that the protection of trehalose against OGD-induced cell death and protein aggregation in SH-SY5Y cells was reversed when proteasome activity was inhibited by MG-132. Further studies revealed that trehalose prevented OGD-induced reduction of proteasome activity via suppression of both oxidative stress and endoplasmic reticulum stress. Particularly, our results showed that trehalose inhibited OGD-induced autophagy. Therefore, we demonstrated that proteasome dysfunction contributed to protein aggregation caused by ischemic insults and trehalose prevented protein aggregation via preservation of proteasome activity, not via induction of autophagy.  相似文献   

7.
The maintenance of the mitochondrial genomic integrity is a prerequisite for proper mitochondrial function. Due to the high concentration of reactive oxygen species (ROS) generated by the oxidative phosphorylation pathway, the mitochondrial genome is highly exposed to oxidative stress leading to mitochondrial DNA injury. Accordingly, mitochondrial DNA damage was shown to be associated with ageing as well as with numerous human diseases including neurodegenerative disorders and cancer. To date, several methods have been described to detect damaged mitochondrial DNA, but those techniques are semi-quantitative and often require high amounts of genomic input DNA. We developed a rapid and quantitative method to evaluate the relative levels of damage in mitochondrial DNA by using the real time-PCR amplification of mitochondrial DNA fragments of different lengths. We investigated mitochondrial DNA damage in SH-SY5Y human neuroblastoma cells exposed to hydrogen peroxide or stressed by over-expression of the tyrosinase gene. In the past, there has been speculation about a variable vulnerability to oxidative stress along the mitochondrial genome. Our results indicate the existence of at least one mitochondrial DNA hot spot, namely the D-Loop, being more prone to ROS-derived damage.  相似文献   

8.
Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.  相似文献   

9.
ABSTRACT: BACKGROUND: Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear. RESULTS: We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA. CONCLUSIONS: These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.  相似文献   

10.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

11.
The autoxidation and enzymatic catabolism of dopamine results in the generation of reactive oxygen species (ROS), which may possibly contribute to oxidative stress in multiple neurodegenerative disorders. Recent studies indicate that proteasome inhibition occurs in numerous neurodegenerative conditions, possibly as the result of oxidative stress, although the effects of dopamine on proteasome activity have not been determined. In the present study we examined the effects of dopamine on proteasome activity in the neural PC12 cell line. Application of dopamine induced a dose- and time-dependent decrease in proteasome activity, which occurred prior to cell death. Application of an antioxidant (gluthathione monoethyl ester), monoamine oxidase inhibitors (deprenyl, clogyline, paragyline), or an inhibitor of dopamine uptake (nomifensine) attenuated dopamine toxicity and dopamine-induced proteasome impairment. Application of the proteasome inhibitor lactacystin increased the toxicity of dopamine and the levels of protein oxidation following administration of dopamine. Together, these data indicate that dopamine induces proteasome inhibition that is dependent, in part, on ROS and dopamine uptake, and suggest a possible role for proteasome inhibition in dopamine toxicity.  相似文献   

12.
Rhus verniciflua Stokes (RVS), traditionally used as a food supplement and in traditional herbal medicine for centuries in Korea, is known to possess various pharmacological properties. Environmental neurotoxins such as rotenone, a specific inhibitor of complex I provide models of Parkinson’s disease (PD) both in vivo and in vitro. In this study, we investigated the neuroprotective effect of RVS against rotenone-induced toxicity in human dopaminergic cells, SH-SY5Y. Cells exposed to rotenone for 24 h-induced cellular injury and apoptotic cell death. Pretreatment of cells with RVS provided significant protection to SH-SY5Y cells. Further, RVS offered remarkable protection against rotenone-induced oxidative stress and markedly inhibited mitochondrial membrane potential (MMP) disruption. RVS also attenuated the up-regulation of Bax, Caspase-9 and Caspase-3 and down-regulation of Bcl-2. Moreover, pretreatment with RVS prevented the decrease in tyrosine hydroxylase (TH) levels in SH-SY5Y cells. Interestingly, RVS conferred profound protection to human dopaminergic cells by preventing the downregulation of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). These results suggest that RVS may protect dopaminergic neurons against rotenone-induced apoptosis by multiple functions and contribute to neuroprotection in neurodegenerative diseases, such as PD.  相似文献   

13.
To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10) interacts with heat shock protein 60 (HSP60) and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS) generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.  相似文献   

14.
Subacute myelo-optico-neuropathy (SMON) is a progressive neurological disorder affecting the spinal cord, peripheral nerves and optic nerves. Although it has been assumed that SMON was caused by intoxication of clioquinol, the mechanism underlying clioquinol-induced neurotoxicity is not fully understood. This study aimed to clarify the relevance of oxidative stress to clioquinol-induced neurotoxicity and the cause of the enhanced oxidative stress. Clioquinol induced cell death in human-derived neuroblastoma cell line, SH-SY5Y, in a dose-dependent manner. This process was accompanied by activation of caspase-3 and enhanced production of reactive oxygen species (ROS). We examined whether clioquinol inhibited the activity of superoxide dismutase-1 (SOD1), based on its metal chelating properties. Clioquinol inhibited activities of purified SOD1 in a dose-dependent manner. Cytosolic SOD activities were also inhibited in SH-SY5Y cells treated with clioquinol. Finally, addition of exogenous SOD1 to the culture significantly reduced enhanced ROS production and cell death induced by clioquinol in SH-SY5Y cells. These findings suggested that enhanced oxidative stress caused by inhibition of SOD1 undelay clioquinol-induced neurotoxicity and was relevant to the pathogenesis of SMON.  相似文献   

15.
观察鱼藤酮诱导的线粒体轻度损伤细胞氧化应激时硫氧还蛋白转录水平的变化,探讨细胞氧化损伤的可能机制。通过荧光素发光法检测ATP生成、细胞内活性氧(ROS)水平的变化,流式细胞术检测线粒体膜电位,了解低剂量鱼藤酮对线粒体功能的影响;继而用H2O2诱导细胞氧化损伤,MTT法检测细胞活性,观察正常及线粒体缺陷细胞氧化应激时,胞内硫氧还蛋白(Trx)mRNA水平的变化。结果表明,鱼藤酮以剂量依赖方式抑制线粒体ATP的产生、降低线粒体膜电位,而细胞内ROS水平增高;当线粒体损伤细胞氧化应激时胞内Trx mRNA水平降低,提示鱼藤酮诱导线粒体轻度损伤细胞抗氧化能力降低与Trx转录受到抑制有关。  相似文献   

16.
We report here that exposure to low concentrations of proteasome inhibitors (e.g. 10-100 nm MG-132, 0.1-3 nm epoxomicin or 10-30 nm clasto-lactacystin beta-lactone) resulted in an enhancement, rather than an inhibition, of proteasome activity in cultured neocortical neurons. Size-fractionation chromatography confirmed that the enhanced peptide cleavage activity was associated with proteasome-sized complexes. This sub toxic exposure reduced neuronal death caused by subsequent exposure to oxidative stress (100-200 microm H(2)O(2) for 30 min, 24-h exposure to 100 microm paraquat or 7.5 microm menadione), but did not alter vulnerability to excitotoxicity (5-min exposure to 30-100 microm NMDA or 24 exposure to 12 microm NMDA). Sub toxic proteasome inhibitor exposure caused an increase in levels of proteasome core subunit proteins and mRNAs, but not in levels of potentially cytoprotective heat shock proteins (hsp70, hsp90 and hsp40). The neuroprotective effects of proteasome inhibitor pre-treatment were blocked by coapplication of proteasome inhibitors during the oxidative insult. These findings support a model in which sublethal proteasome inhibition induces neurons to increase proteasome activity and promotes resistance to oxidative injury and suggests that enhancement of proteasome activity is a potential therapeutic target for diseases in which oxidative stress has been implicated.  相似文献   

17.
This study was designed to investigate the effects of α-synuclein on toxicity induced by long-term exposure to relatively low concentrations of rotenone.Compared with the control groups,the inhibition of cell viability which overexpressed α-synuclein(SH-SY5Y-Syn) improved after 1 and 2 weeks of rotenone treatment.The complex I activity was greater and the mitochondrial membrane swelling intensity was reduced after 1 and 2 weeks of treatment,which indicated that α-synuclein,at least in part,resists the rotenone-induced oxidative stress.The results indicate that α-synuclein has a dual effect on toxicity of rotenone according to exposure time in human SH-SY5Y cells.  相似文献   

18.
Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.  相似文献   

19.
帕金森病(Parkinson’s disease,PD)的一个主要病理特征就是中脑黑质多巴胺能神经元的丧失,目前研究认为该病理变化与多种因素有关,包括蛋白质异常积聚、泛素蛋白酶体系统功能异常、神经炎症、线粒体损伤和氧化应激。在帕金森病人和动物模型中,中脑黑质有着明显的氧化改变。帕金森病的遗传和环境因素均会作用于线粒体,尤其对线粒体呼吸链复合体I有着抑制作用,造成线粒体损伤,产生活性氧(ROS)。活性氧的大量产生造成脂类、蛋白质和DNA的氧化,从而加剧多巴胺能神经元的线粒体和细胞损伤。多巴胺代谢过程中会产生活性氧,该自身代谢特点决定了多巴胺能神经元存在有较高的氧化应激,易受环境因素的影响。因而,线粒体的氧化损伤在帕金森病病理发生中起着重要作用。  相似文献   

20.
Oxidative stress in septic shock and disseminated intravascular coagulation   总被引:6,自引:0,他引:6  
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidant stress plays a major role in several aspects of septic shock and disseminated intravascular coagulation (DIC), and it is the subject of this review. Immunohistochemical and biochemical evidence demonstrate the significant role of reactive oxygen species (ROS) in endotoxic and hemorrhagic shock, and in endothelial injury associated with DIC syndrome. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of ROS. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase, with eventual severe energy depletion of the cells. Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics (SODms), which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, have been shown to prevent in vivo shock and the cellular energetic failure associated with shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号