首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究尿嘧啶脱氧核糖核苷三磷酸酶(dUTPase)在马传染性贫血病毒(equine infectous anemia virus,EIAV)致弱过程中的作用,探索dUTPase结构与功能的关系,分别对EIAV强、弱毒株dUTPase的编码基因进行了结构分析,并在大肠杆菌中进行了表达.经镍-次氮基三乙酸(Ni-NTA)金属亲合层析方法对表达产物纯化后,用3H标记底物的方法测定了重组强、弱毒株dUTPase的活性.证明所表达的两种重组dUTPase均具有水解dUTP的功能,但重组弱毒株dUTPase的活性显著高于重组强毒株dUTPase的活性.结果提示,由于EIAV疫苗株在驴白细胞上连续传代培养,使病毒dUTPase的活性增强和复制能力提高,而决定酶活性改变的分子基础是dUTPase编码基因中的两个氨基酸发生了突变.此结果对其它慢病毒病的免疫预防具有重要参考价值.  相似文献   

2.
人细胞核dUTPase的克隆表达及其酶学活性   总被引:2,自引:0,他引:2  
以阿尔茨海默病 (Alzheimer’sdisease ,AD)患者脑cDNA文库质粒为模板 ,用PCR方法扩增得到人细胞核dUTP焦磷酸酶 (dUTPase)的cDNA ,将其克隆到谷胱甘肽 S 转移酶 (GST)融合表达载体pGEX 4T 1中 ,并在大肠杆菌BL2 1中获得高效表达 .表达的融合蛋白GST dUTPase经过谷胱甘肽 Sepharose 4B亲和层析 ,凝血酶酶切和SephacrylS 10 0纯化 ,得到高纯度dUTPase蛋白 .通过SDS PAGE ,氨基酸组成分析 ,N端氨基酸序列测定以及HPLC测Mr 结果与期望值一致 .通过检测该酶水解dUTP释放的焦磷酸 (PPi)来测定表达产物dUTPase蛋白及GST dUTPase融合蛋白的酶活性 ,发现两蛋白都具有正常的酶水解dUTP活性 ,但融合蛋白的活性比dUTPase蛋白低 7~ 8倍 .同时研究了Mg2 +和EDTA对酶活性的影响  相似文献   

3.
dUTP was purified 120-fold from extracts of Acholeplasma laidlawii B-PG9 by Blue-Sepharose, Phenyl-Sepharose, hydroxyapatite, and DEAE-Sephacel chromatography techniques. The only substrate for the enzyme was dUTP with an apparent Km of 4.5 microM. The only reaction products were dUMP and PPi. The dUTPase did not exhibit any specific divalent cation requirement, but it was inhibited by EDTA. The enzyme was not inhibited by Pi or p-hydroxymercuribenzoate. The molecular weight of the enzyme was estimated by gel filtration chromatography to be 48,000, and its isoelectric point was 5.3. The enzyme was thermostable at 55 degrees C for 1 h. A. laidlawii dUTPase was distinguishable from KB (human epidermoid carcinoma) dUTPase by differences in electrophoretic migration, isoelectric point, and thermostability. The enzyme is important in preventing dUTP from being incorporated into DNA and may have a significant role in both the synthesis of thymidine- and PPi-dependent phosphorylations.  相似文献   

4.
A deoxyuridine triphosphate nucleotidohydrolase (dUTPase) which is induced in KB cells infected with herpes simplex virus type 1 (HSV-1) was purified approximately 175-fold using affinity, hydrophobic, adsorption, and ion-exchange chromatography techniques. Of the nucleoside triphosphates commonly found in DNA and RNA, only dUTP acted as a substrate for the enzyme, and the apparent Km was 4 microM. While the HSV-1-induced dUTPase exhibited activity in the absence of added divalent cations, the activity was stimulated by Mg2+ and inhibited by EDTA. The inhibition caused by EDTA was reversed by Mg2+, Co2+, or Mn2+. The HSV-1-induced dUTPase was also inhibited by hydroxymercuribenzoate and to a lesser degree by pyrophosphate but not by orthophosphate. The molecular weight of the enzyme was estimated to be 53,000, and its isoelectric point was 5.8. The enzyme exhibited maximal activity over the pH range of 6.5-8.5. The enzyme was thermolabile at 45 degrees C, exhibiting a t1/2 of 35 min. The HSV-1-induced dUTPase was distinguishable from the KB dUTPase by its elution pattern on the various chromatography matrixes, isoelectric point, migration in polyacrylamide gels, thermostability, and response to divalent cations.  相似文献   

5.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a key enzyme in pyrimidine nucleotide metabolism, specifically hydrolyzes deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate and inorganic pyrophosphate. This enzyme activity has been studied in cellular extracts from Allium cepa root meristem cells with two specific aims: (i) to determine how the properties of the plant enzyme compare with those of dUTPase purified from other sources, and (ii) to analyze the relationship between dUTPase activity and cell proliferation and cell differentiation. Plant dUTPase is highly specific for dUTP, with an apparent Km of 6 microM, is highly sensitive to EDTA and it is probably a metalloenzyme. Our results demonstrate the presence of high levels of dUTPase in both resting and proliferating root meristem cells. The enzyme activity appears to be tightly regulated during the cell cycle. dUTPase activity increases at the G1/S boundary, remains high throughout S phase, and shows almost undetectable levels during G1 and G2. We have also found that dUTPase activity in differentiated cells, located in the mature portion of the root, is barely detectable. Altogether our results indicate that dUTPase activity is modulated by the proliferation rate and that this activity progressively decreases as cells initiate their differentiation program.  相似文献   

6.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) (EC 3.6.1.23) derived from HeLa S3 cells has been purified to near homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of about 16,000 nmol of dUMP hydrolyzed per min/mg of protein. The dUTPase enzyme derived from HeLa S3 cells appears to be composed to two equal molecular mass subunits, each being about 22,500 daltons. Association of these subunits to produce a 45,000-dalton protein is promoted by MgCl2. In the presence of EDTA enzyme activity is abolished and the enzyme dissociates into its monomeric form. MgCl2 will completely reverse the inhibition caused by EDTA and promote subunit association. MnCl2 will also promote association of the dUTPase subunits. However, MnCl2 will not completely reverse inhibition by EDTA. In addition, purified dUTPase, extensively dialyzed to remove contaminating ions, is activated almost 2-fold by the addition of 5 mM MgCl2. In contrast, addition of 5 mM MnCl2 to the dialyzed enzyme preparation will cause more than a 50% decrease in enzyme activity. This data indicates that Mg2+ is the natural prosthetic group for this enzyme. The Km value of dUTP for the purified enzyme is 3 X 10(-6) M in the presence of MgCl2. The turnover number for this enzyme has been calculated to be 550 molecules of dUTP hydrolyzed per min under standard assay conditions. Infection of HeLa S3 cells with herpes simplex type 1 virus induces a distinct species of dUTPase. This new species of dUTPase has an isoelectric point of 8.0, compared to an isoelectric point in the range of 5.7 to 6.5 for the HeLa S3 dUTPase. Molecular weight determinations of this new species of dUTPase indicate that the native enzyme is monomeric with a molecular weight of about 35,000. The virally induced dUTPase is inhibited by EDTA and this inhibition is reversed by MgCl2. Unlike the HeLa S3 dUTPase, the virally induced enzyme does not appear to be composed of subunits.  相似文献   

7.
An enzyme, dUTPase, that catalyzes the conversion of dUTP to dUMP and PPi, was partially purified from regenerating rat livers. The molecular weight was estimated by gel filtration to be 60,000. The apparent Km for dUTP was 12 μM. No other deoxyribonucleoside triphosphates served as a substrate. This enzyme is active in the absence of added divalent cations or sulfhydryl reagents; the activity could be inhibited by EDTA and shows a broad pH optimum with no decrease in activity from pH 7 to 11. The specific activity of dUTPase in rat liver begins to rise 16 h after partial hepatectomy and reaches a maximum about 24 h after the operation, rising to at least 5 to 6 times the normal level.  相似文献   

8.
The African swine fever virus (ASFV) gene E165R, which is homologous to dUTPases, has been characterized. A multiple alignment of dUTPases showed the conservation in ASFV dUTPase of the motifs that define this protein family. A biochemical analysis of the purified recombinant enzyme showed that the virus dUTPase is a trimeric, highly specific enzyme that requires a divalent cation for activity. The enzyme is most probably complexed with Mg(2+), the preferred cation, and has an apparent K(m) for dUTP of 1 microM. Northern and Western blotting, as well as immunofluorescence analyses, indicated that the enzyme is expressed at early and late times of infection and is localized in the cytoplasm of the infected cells. On the other hand, an ASFV dUTPase-deletion mutant (vDeltaE165R) has been obtained. Growth kinetics showed that vDeltaE165R replicates as efficiently as parental virus in Vero cells but only to 10% or less of parental virus in swine macrophages. Our results suggest that the dUTPase activity is dispensable for virus replication in dividing cells but is required for productive infection in nondividing swine macrophages, the natural host cell for the virus. The viral dUTPase may play a role in lowering the dUTP concentration in natural infections to minimize misincorporation of deoxyuridine into the viral DNA and ensure the fidelity of genome replication.  相似文献   

9.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) was purified to near homogeneity from the spleens of rats made anemic by phenylhydrazine injection; the enzyme activity in these spleens was about 30 times higher than that in spleens of untreated rats. The purified enzyme preparation showed an apparent molecular weight of 58,500 and appeared to consist of three identical subunits each with a molecular weight of about 19,500. The purified enzyme catalyzed specifically the hydrolysis of dUTP, and no other naturally occurring nucleoside triphosphates could be hydrolyzed by this enzyme. The Km value for dUTP was 12 μm. Enzyme activity was inhibited by the addition of EDTA, whereas the enzyme preparation exhibited activity in the absence of added divalent cations. Activity was not affected by the addition of fluoride ion.  相似文献   

10.
The gene encoding dUTPase from Pyrococcus woesei was cloned into Escherichia coli expression system. It shows 100% gene identity to homologous gene in Pyrococcus furiosus. The expression of N-terminal His(6)-tagged Pwo dUTPase was performed in E. coli BL21(DE3)pLysS and E. coli Rosetta(DE3)pLysS strain that contains plasmid encoding additional copies of rare E. coli tRNAs. E. coli Rosetta(pLysS) strain was found with two times higher expression yield of His(6)-tagged Pwo dUTPase than E. coli BL21(DE3)pLysS. The His(6)-tagged Pwo dUTPase was purified on Ni(2+)-IDA-Sepharose, dialyzed, and the enzyme activity was investigated. We found that His(6)-tag domain has no influence on dUTP hydrolytic activity. dUTP is generated during PCR from dCTP, which inhibits the polymerization of DNA catalyzed by DNA polymerase with 3(')-5(') exonuclease activity. We observed that the thermostable His(6)-tagged Pwo dUTPase used for the polymerase chain reaction with P. woesei DNA polymerase improves the efficiency of PCR and it allows for amplification of longer targets.  相似文献   

11.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

12.
dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a beta-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this beta-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKa of both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme's catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved alpha-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors.  相似文献   

13.
The mouse mammary tumor virus gag-pro transframe protein (p30) contains the nucleocapsid protein domain derived from the 3' end of gag, fused to 154 residues encoded by the 5' region of the pro open reading frame. The DNA coding for p30 was cloned into the plasmid pALTER-1, and an additional nucleotide was inserted by site-directed mutagenesis to allow the read-through from the gag into the pro open reading frame. The obtained insert was then cloned into pGEX-2T, a plasmid containing the glutathione S-transferase gene of Schistosoma japonicum and a nucleotide sequence encoding for a thrombin cleavage site. The chimeric protein (GST-p30) was isolated by affinity chromatography on a glutathione-Sepharose 4B column, and after thrombin treatment, the excised p30 was further purified on a single-stranded DNA-agarose column. This protein showed dUTPase activity, with only negligible cleavage of dATP, dGTP, dCTP, dTTP, or UTP. Its apparent Km for dUTP was 28 microM. The enzyme was inhibited by EDTA, but its effect could be reversed by Mg2+ and other divalent cations. dUTPase activity was also detected in purified mouse mammary tumor virus, and p30 was the only protein recognized by antibodies directed towards the carboxyl-terminal sequence of the dUTPase coding region.  相似文献   

14.
Adult rabbit brain contains the enzymatic machinery to convert deoxyuridine to deoxyuridine triphosphate (dUTP). Although dUTP as dUMP can be readily incorporated into DNA in place of thymidine monophosphate, we detected no (3H)dUMP in newly synthesized (3H)DNA in adult rabbit brain after the intraventricular injection of (3H)deoxyuridine. Only (3H)thymidine was detected. The probable explanation for the lack of incorporation of uracil into adult rabbit brain DNA is the presence of a specific, high affinity dUTPase which converts dUTP to dUMP and PP. After homogenization and ammonium sulfate fractionation of adult rabbit brain (35 to 75% saturation), a high affinity, specific dUTPase was detected in the dialyzed enzyme preparation. The Km and Vmax of the dUTPase were 0.2 microM and 36 pmol/mg protein/min, respectively. No high affinity dUTPase activity was detectable in liver. In brain, another enzyme hydrolyzed dUTP and dTTP (NTPase( to their respective diphosphates. NTPase, unlike dUTPase, was not sensitive to heating at 65 degrees C for five minutes. Thus, brain, like other tissues, contains a high affinity, specific dUTPase presumably to "sanitize" the cells of dUTP and, thus, protect the integrity of newly synthesized DNA.  相似文献   

15.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) catalyses the hydrolysis of dUTP to dUMP and PPi thus controlling the incorporation of uracil into DNA genomes. In Campylobacter jejuni dUTPase exhibits structural properties of dimeric proteins characteristic of protozoa of the Kinetoplastidae family. In the present study we perform a kinetic analysis of Campylobacter dUTPase using the continuous spectrophotometric method and show that the enzyme is highly specific for deoxyuridine nucleotides. The Michaelis-Menten constant for dUTP was 0.66 microM while the k(cat) was 12.3 s(- 1). dUDP was also efficiently hydrolysed although the specificity constant, k(cat)/K(m), was five fold lower than for dUTP. The reaction product and the non hydrolysable analogue alpha,beta imido dUDP are potent inhibitors of the enzyme while several analogues of dUMP with substituents at the 3'- and 5'-positions active against trimeric dUTPases, show poor inhibitory activity. Apparent structural and kinetic differences with other eukaryotic dUTPases suggest that the present enzyme might be exploited as a target for new drugs against campylobacteriosis.  相似文献   

16.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

17.
The dut gene, which encodes Escherichia coli deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), has been recloned to increase overexpression of the enzyme and to enable simplification of the purification protocol into a one-step procedure. The gene was cloned into the vector pET-3a and expressed in E. coli BL21(DE3) pLysS under the control of a bacteriophage T7 promotor. Induction results in production of dUTPase corresponding to 60% of the extracted protein. Phosphocellulose chromatography at low pH was utilised for one-step purification, resulting in a homogenous preparation of the recombinant protein with a highly specific activity. The yield of purified enzyme is 500 mg per litre of bacterial culture, a significant increase compared to previously employed methods.  相似文献   

18.
To assess whether uracil DNA glycosylase and dUTP nucleotidohydrolase (dUTPase) can be involved in repair-type DNA synthesis associated to crossing-over or induced by UV and X-ray treatments, we have studied these enzyme activities in male mouse germ cells at specific stages of differentiation.Although the highest uracil DNA glycosylase activity was observed in dividing germ cells (spermatogonia and preleptotene spermatocytes), some activity was also detected in meiotic (3.5%) and post-meiotic (1.0%) cells with a relative maximum of activity at pachytene stage (4.7%) when meiotic crossing-over takes place. These findings suggest that uracil DNA glycosylase is involved, in this biological system, in DNA replication and in repair-type DNA synthesis.dUTPase is present at all the stages of spermatogenesis studied but, unlike thymidylate synthetase which is mainly associated with replicating germ cells, dUTPase activity is maximal in spermatocytes at pachytene stages. The data reported suggest that, in this biological system, the main role of dUTPase is to degrade dUTP to prevent misincorporation of uracil into DNA during crossing-over, rather than to participate in the biosynthetic pathway of dTTP.  相似文献   

19.
Drosophila deoxyuridine triphosphatase. Purification and characterization   总被引:6,自引:0,他引:6  
Deoxyuridine triphosphatase (dUTPase), an enzyme that catalyzes hydrolysis of dUTP to deoxyuridylate and inorganic pyrophosphate, has been purified approximately 6,000-fold from Drosophila embryos. The enzyme has a native molecular weight of 46,000 and a sedimentation coefficient of 3.5 S. The enzyme is most likely a metalloenzyme. It is specific for dUTP among the DNA nucleotides tested, with an apparent Km of 1 microM. The expression of dUTPase appears stage-specific, with embryos representing the only step in the life cycle of Drosophila with clearly detectable levels of the enzyme. While other possibilities exist, these results suggest an enhanced opportunity for the inclusion of uracil into Drosophila DNA subsequent to embryonic development.  相似文献   

20.
Deoxyuridine triphosphate nucleotidohydrolase (EC 3.6.U.23) has been partially purified from HeLa S3 cells, and found to have an apparent molecular weight of 50--55 000 by gel filtration under non-denaturing conditions. The enzyme is specific for the hydrolysis of dUTP, requires Mg2+ and is inhibited by EDTA. The apparent Km for dUTP is 0.1 microM. Isolated HeLa cell nuclei were treated with dUTPase before pulse-labelling with [3H]dTTP which also had been pretreated with dUTPase. This pretreatment changed neither the total amount nor the size of the primary DNA pieces. A role for dUTP incorporation in their genesis can therefore be excluded and these primary DNA pieces are considered to be true intermediates in discontinuous DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号