首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Huntington’s disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As a multi-subunit protein localized in the mitochondria of eukaryotic cells, the F0F1-ATP synthase α belongs to the family of stress proteins HSP60. Currently, mounting evidences indicate F0F1-ATP synthase α may play a role in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Recently, ATP synthase α was reported to have protective and therapeutic roles in primary cardiacmyocytes of iron-overloaded rats by lowering ROS production. However, little is understood about the role of ATP synthase α in cell death and neurodegeneration. Here, we demonstrate that overexpression of ATP synthase α suppresses huntingtin (htt) polyQ aggregation and toxicity in transfected SH-SY5Y cell lines. Overexpression of ATP synthase α is able to protect cell death caused by polyglutamine-expanded htt. Transient overexpression of ATP synthase α suppresses the aggregate formation by estimation of polyQ aggregation, Western blot analysis, and filter trap assay (FTA) in transfected SH-SY5Y cells. These results indicated that ATP synthase α has a strong inhibitory effect on polyglutamine aggregate formation and toxicity in vitro, and suggest a novel neuroprotective role of ATP synthase α.  相似文献   

3.
Polyglutamine diseases are neurodegenerative diseases caused by the expansion of polyglutamine (polyQ) tracts within different proteins. Although multiple pathways have been found to modulate aggregation of the expanded polyQ proteins, the mechanisms by which polyQ tracts induced neuronal cell death remain unknown. We conducted a genome-wide genetic screen to identify genes that suppress polyQ-induced neurodegeneration when mutated. Loss of the scaffold protein RACK1 alleviated cell death associated with the expression of polyQ tracts alone, as well as in models of Machado-Joseph disease (MJD) and Huntington’s disease (HD), without affecting proteostasis of polyQ proteins. A genome-wide RNAi screen for modifiers of this rack1 suppression phenotype revealed that knockdown of the E3 ubiquitin ligase, POE (Purity of essence), further suppressed polyQ-induced cell death, resulting in nearly wild-type looking eyes. Biochemical analyses demonstrated that RACK1 interacts with POE and ERK to promote ERK degradation. These results suggest that RACK1 plays a key role in polyQ pathogenesis by promoting POE-dependent degradation of ERK, and implicate RACK1/POE/ERK as potent drug targets for treatment of polyQ diseases.  相似文献   

4.

Background

Huntington’s disease (HD) is caused by the abnormal expansion of the polyglutamine tract in the human Huntingtin protein (polyQ-hHtt). Although this mutation behaves dominantly, huntingtin loss of function also contributes to HD pathogenesis. Indeed, wild-type Huntingtin plays a protective role with respect to polyQ-hHtt induced defects.

Methodology/Principal Findings

The question that we addressed here is what part of the wild-type Huntingtin is responsible for these protective properties. We first screened peptides from the Huntingtin protein in HeLa cells and identified a 23 aa peptide (P42) that inhibits polyQ-hHtt aggregation. P42 is part of the endogenous Huntingtin protein and lies within a region rich in proteolytic sites that plays a critical role in the pathogenesis process. Using a Drosophila model of HD, we tested the protective properties of this peptide on aggregation, as well as on different polyQ-hHtt induced neuronal phenotypes: eye degeneration (an indicator of cell death), impairment of vesicular axonal trafficking, and physiological behaviors such as larval locomotion and adult survival. Together, our results demonstrate high protective properties for P42 in vivo, in whole animals. These data also demonstrate a specific role of P42 on Huntington’s disease model, since it has no effect on other models of polyQ-induced diseases, such as spinocerebellar ataxias.

Conclusions/Significance

Altogether our data show that P42, a 23 aa-long hHtt peptide, plays a protective role with respect to polyQ-hHtt aggregation as well as cellular and behavioral dysfunctions induced by polyQ-hHtt in vivo. Our study also confirms the correlation between polyQ-hHtt aggregation and neuronal defects. Finally, these results strongly suggest a therapeutic potential for P42, specific of Huntington’s disease.  相似文献   

5.
The Huntington’s disease mutation has been identified as a CAG/polyglutamine repeat expansion in a large gene of unknown function. In order to develop the transgenic systems necessary to uncover the molecular pathology of this disorder, it is necessary to be able to manipulate highly expanded CAG repeats in a cloned form. We have identified a patient with an expanded allele of greater than 170 repeat units and have cloned the mutant allele in the lambda zap vector. The recovery of highly expanded repeats after clone propagation was more efficient when repeats were maintained as lambda phage clones rather than as the plasmid counterparts. Manipulation of the repeats as phage clones has enabled us to generate Huntington’s disease transgenic mice that contain highly expanded (CAG)115–(CAG)150 repeats and that develop a progressive neurological phenotype. Received: 7 October 1996 / Revised: 5 December 1996  相似文献   

6.
Glutamate excitotoxicity is thought to play an important role in Huntington’s disease (HD), which is caused by a polyglutamine expansion in the HD protein huntingtin (htt). Overactivation of group I metabotropic glutamate receptors (mGluRs), which include mGluR1 as well as mGluR5 and are coupled via phospholipase C to the inositol phosphate pathway, is found to be involved in mutant htt-mediated neurotoxicity. However, activation of mGluR5 also leads to neuronal protection. Here, we report that mutant htt can activate both mGluR5-mediated ERK and JNK signaling pathways. While increased JNK signaling causes cell death, activation of ERK signaling pathway is protective against cell death. Expression of mutant htt in cultured cells causes greater activation of JNK than ERK. These findings suggest that selective inhibition of the JNK signaling pathway may offer an effective therapeutic approach for reducing htt-mediated excitotoxicity.  相似文献   

7.
While Huntington’s disease (HD) is classified as a neurological disorder, HD patients exhibit a high incidence of cardiovascular events leading to heart failure and death. In this study, we sought to better understand the cardiovascular phenotype of HD using the BACHD mouse model. The age-related decline in cardiovascular function was assessed by echocardiograms, electrocardiograms, histological and microarray analysis. We found that structural and functional differences between WT and BACHD hearts start at 3 months of age and continue throughout life. The aged BACHD mice develop cardiac fibrosis and ultimately apoptosis. The BACHD mice exhibited adaptive physiological changes to chronic isoproterenol treatment; however, the medication exacerbated fibrotic lesions in the heart. Gene expression analysis indicated a strong tilt toward apoptosis in the young mutant heart as well as changes in genes involved in cellular metabolism and proliferation. With age, the number of genes with altered expression increased with the large changes occurring in the cardiovascular disease, cellular metabolism, and cellular transport clusters. The BACHD model of HD exhibits a number of changes in cardiovascular function that start early in the disease progress and may provide an explanation for the higher cardiovascular risk in HD.  相似文献   

8.
Huntington’s disease (HD) is an autosomal dominant genetic disorder that specifically causes neurodegeneration of striatal neurons, resulting in a triad of symptoms that includes emotional, cognitive, and motor disturbances. The HD mutation causes a polyglutamine repeat expansion within the N-terminal of the huntingtin (Htt) protein. This expansion causes aggregate formation within the cytosol and nucleus due to the presence of misfolded mutant Htt, as well as altered interactions with Htt’s multiple binding partners, and changes in post-translational Htt modifications. The present review charts efforts toward a therapy that delays age of onset or slows symptom progression in patients affected by HD, as there is currently no effective treatment. Although silencing Htt expression appears promising as a disease modifying treatment, it should be attempted with caution in light of Htt’s essential roles in neural maintenance and development. Other therapeutic targets include those that boost aggregate dissolution, target excitotoxicity and metabolic issues, and supplement growth factors.  相似文献   

9.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by expansion of polyglutamine at the N-terminus of the huntingtin protein. Striatal medium spiny neurons (MSN) are the primary targets of HD pathology. In our study, a cellular model of HD was based on the human neuroblastoma cells SK-N-SH transfected with plasmid for expression of the mutant huntingtin protein Htt138Q. Expression of Htt138Q increased store-dependent calcium entry into SK-N-SH cells. EVP4593 reversibly blocked the abnormal store-dependent response, probably generated by the channels incorporating TRPC1 ( transient receptor potential canonical 1) subunit.  相似文献   

10.
Huntington’s disease (HD) and spinocerebellar ataxias (SCAs) are autosomal-dominant neurodegenerative disorders. HD is caused by polyglutamine (polyQ) expansion in the amino-terminal region of a protein huntingtin (Htt) and primarily affects medium spiny striatal neurons (MSN). Many SCAs are caused by polyQ-expansion in ataxin proteins and primarily affect cerebellar Purkinje cells. The reasons for neuronal dysfunction and death in HD and SCAs remain poorly understood and no cure is available for the patients. Our laboratory discovered that mutant huntingtin, ataxin-2 and ataxin-3 proteins specifically bind to the carboxy-terminal region of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), an intracellular Ca2+ release channel. Moreover, we found that association of mutant huntingtin or ataxins with IP3R1 causes sensitization of IP3R1 to activation by IP3 in planar lipid bilayers and in neuronal cells. These results suggested that deranged neuronal Ca2+ signaling might play an important role in pathogenesis of HD, SCA2 and SCA3. In support of this idea, we demonstrated a connection between abnormal Ca2+ signaling and neuronal cell death in experiments with HD, SCA2 and SCA3 transgenic mouse models. Additional data in the literature indicate that abnormal neuronal Ca2+ signaling may also play an important role in pathogenesis of SCAl, SCA5, SCA6, SCA14 and SCA15/16. Based on these results I propose that IP3R and other Ca2+ signaling proteins should be considered as potential therapeutic targets for treatment of HD and SCAs.  相似文献   

11.
The polyglutamine (polyQ) diseases such as Huntington’s disease (HD), are neurodegenerative diseases caused by proteins with an expanded polyQ stretch, which misfold and aggregate, and eventually accumulate as inclusion bodies within neurons. Molecules that inhibit polyQ protein misfolding/aggregation, such as Polyglutamine Binding Peptide 1 (QBP1) and molecular chaperones, have been shown to exert therapeutic effects in vivo by crossing of transgenic animals. Towards developing a therapy using these aggregation inhibitors, we here investigated the effect of viral vector-mediated gene therapy using QBP1 and molecular chaperones on polyQ disease model mice. We found that injection of adeno-associated virus type 5 (AAV5) expressing QBP1 or Hsp40 into the striatum both dramatically suppresses inclusion body formation in the HD mouse R6/2. AAV5-Hsp40 injection also ameliorated the motor impairment and extended the lifespan of R6/2 mice. Unexpectedly, we found even in virus non-infected cells that AAV5-Hsp40 appreciably suppresses inclusion body formation, suggesting a non-cell autonomous therapeutic effect. We further show that Hsp40 inhibits secretion of the polyQ protein from cultured cells, implying that it inhibits the recently suggested cell-cell transmission of the polyQ protein. Our results demonstrate for the first time the therapeutic effect of Hsp40 gene therapy on the neurological phenotypes of polyQ disease mice.  相似文献   

12.
Huntington’s disease (HD) is a devastating polyglutamine disorder characterized by extensive neurodegeneration and metabolic abnormalities at systemic, cellular and intracellular levels. Metabolic alterations in HD manifest as abnormal body weight, dysregulated biomolecule levels, impaired adipocyte functions, and defective energy state which exacerbate disease progression and pose acute threat to the health of challenged individuals in form of insulin resistance, cardiovascular disease, and energy crisis. To colossally mitigate disease symptoms, we tested the efficacy of curcumin in Drosophila model of HD. Curcumin is the bioactive component of turmeric (Curcuma longa Linn), well-known for its ability to modulate metabolic activities. We found that curcumin effectively managed abnormal body weight, dysregulated lipid content, and carbohydrate level in HD flies. In addition, curcumin administration lowered elevated reactive-oxygen-species levels in adult adipose tissue of diseased flies, and improved survival and locomotor function in HD flies at advanced disease stage. Altogether, these findings clearly suggest that curcumin efficiently attenuates metabolic derangements in HD flies and can prove beneficial in alleviating the complexities associated with HD.  相似文献   

13.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.  相似文献   

14.
15.
16.
17.

Background

Huntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls.

Methods

Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.

Results

We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.

Conclusions

Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.  相似文献   

18.
Huntington''s disease (HD) is caused by polyglutamine expansion in huntingtin (htt) protein, but the exact mechanism of HD pathogenesis remains uncertain. Recent evidence suggests that htt proteins with expanded polyglutamine tracts induce endoplasmic reticulum (ER) stress, probably by interfering with ER-associated degradation (ERAD). Here we report that mutant htt interacts and interferes with the function of gp78, an ER membrane-anchored ubiquitin ligase (E3) involved in ERAD. Mapping studies showed that the HEAT repeats 2&3 of htt interact with the cue domain of gp78. The interaction competitively reduces polyubiquitinated protein binding to gp78 and also sterically blocks gp78 interaction of p97/VCP, a molecular chaperone that is essential for ERAD. These effects of htt negatively regulate the function of gp78 in ERAD and are aggravated by polyglutamine expansion. Paradoxically, gp78 is still able to ubiquitinate and facilitate degradation of htt proteins with expanded polyglutamine. The impairment of ERAD by mutant htt proteins is associated with induction of ER stress. Our studies provide a novel molecular mechanism that supports the involvement of ER stress in HD pathogenesis.  相似文献   

19.
Huntington's disease (HD) is caused by CAG repeat expansion in exon 1 of a large gene, IT15, possessing 67 exons. Transgenic mice expressing a truncated N-terminal peptide of huntingtin with an expanded polyglutamine tract translated only from exon 1 develop symptoms similar to Huntington's disease. In the present study, a bacterial system (Escherichia coli) was used to express truncated peptides of huntingtin translated from exon 1 of the HD gene. Bacterial death was observed after the induction of peptides with expanded polyglutamine tracts, and both sodium dodecyl sulfate (SDS)-soluble peptides and insoluble aggregated material were detected by immunoblotting in the homogenates of such E. coli. E. coli death was partially reduced by the addition of dimethylsulfoxide (DMSO) or glycerol to the medium, with a consequent decrease in aggregated material and an increase in SDS-soluble peptide in the homogenate. These results suggest that DMSO and glycerol may decrease the toxicity of huntingtin with expanded polyglutamine tracts by acting as chemical chaperones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号