首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A process using ligand-coupled particles in aqueous polyethylene glycol-dextran two-phase polymer systems was developed to achieve a highly selective, scaleable biochemical separation process. Product protein is bound to the ligand-coupled particles that quantitatively distribute to the polyethylene glycol-rich upper phase. Other proteins and contaminants partition preferentially to the dextran-rich lower phase.The process offers significant advantages over affinity partitioning here the ligand is coupled to the backbone of a polyethylene glycol polymer. These advantages include a much wider diversity of ligands that can be coupled to particles and more effective confinement of the ligand in the process. Affinity partition with ligands coupled to particles is more amenable to scale-up than is affinity chromatography. A variety of commercially available Sepharose-based particles are suitable for this process. Homogenates from Saccharomyces cerevisiae, which is genetically altered to overproduce pyruvate kinase, and Cibacron blue F3G-A-coupled Sepharose particles are used as a model system for the process. Binding studies with/without aqueous two-phase systems show that the formation of a two-phase system after the adsorption equilibrium is reached does not affect the apparent dissociation constant. Binding of protein to ligand-coupled particles is more rapid in single-phase systems than in the polymer two-phase system. Single-phase binding eliminates the mass transfer resistance associated with redistribution of product protein from the dextran-rich bottom phase to the polyethylene glycol-rich top phase.  相似文献   

2.
Metal ion affinity partitioning of protein in aqueous two-phase systems was studied using Sepharose as ligand carrier as an integrated adsorption partitioning. Cu(II)-bound Sepharose was mixed with protein solution and an aqueous two-phase system. The affinity sorbent was distributed quantitatively to the upper side or the interface. The binding studies of lysozyme to copper-bound gel in PEG/dextran two-phase systems demonstrate the feasibility of this bioseparation process. PEG/dextran system did not affect binding and elution of lysozyme to and from the Cu(II)-Sepharose particles.  相似文献   

3.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

4.
The purification of human chymotrypsinogen B (hCTRB) after expression and secretion by the yeast Pichia pastoris is described based on two different approaches using integrated initial recovery. Extraction employing aqueous two-phase systems (ATPS) from poly(ethylene glycol) and sodium sulfate allows direct processing of cell containing yeast suspensions of 50% wet weight. The target protein is obtained partially purified in the top phase while cells and cell debris are partitioned to the bottom phase of the system. hCTRB is further purified by adsorption from the top phase to the cation exchanger SP Sepharose Big Beads and elution in a salt step. The single step isolation of hCTRB is possible by expanded bed adsorption (EBA) using a fluidized cation exchanger (Streamline SP XL). A design strategy is shown taking both target protein binding and stable fluidization of the stationary phase in cell containing suspensions into consideration. For the example of hCTRB isolation from cell containing P. pastoris suspensions, a successful use of this strategy is demonstrated. Both initial recovery strategies deliver a product that can be further purified and formulated by ultrafiltration/diafiltration followed by lyophilization, resulting in a homogeneous product. Scale-up to 30-90 L of culture suspension was shown for both methods, resulting in a product of similar quality. Comparing both strategies reveals that the two-step ATPS route is better suited for high cell density cultures, while the single step EBA method is preferred for cultures of moderate cell density. This is due to the fact that application of EBA is restricted to suspensions of 10-12.5% wet weight cell concentration, thus necessitating dilution of the original broth prior to sample application. The data presented show that integrated recovery operations are a valuable alternative to traditional processing for systems that are problematic during initial solid-liquid separation.  相似文献   

5.
Arginine has been effectively used in various column chromatographies for improving recovery and resolution, and suppressing aggregation. Here, we have tested the effectiveness of arginine as an eluent in dye-affinity column chromatography using Blue-Sepharose, which binds enzymes requiring adenyl-containing cofactors (e.g., NAD). A common eluent, NaCl, showed a broad elution peak with low recovery of lactate dehydrogenase, at most approximately 60% using 2M salt. The recovery decreased as the NaCl concentration was either decreased or increased; i.e., the recovery was maximum at 2M. On the contrary, addition of arginine to the eluent resulted in more than 80% recovery above 0.5M and the recovery was nearly independent of the arginine concentration. The elution peak was much sharper with arginine, leading to elution of more concentrated protein solution. Successful elution of proteins bound to the ATP-agarose resins by arginine was also described.  相似文献   

6.
1. Two different gels have been prepared suitable for the separation of a number of enzymes, in particular NAD+-dependent dehydrogenases, by affinity chromatography. For both the matrix used was Sepharose 4B. For preparation (a), NAD+–Sepharose, 6-aminohexanoic acid has been coupled to the gel by the cyanogen bromide method and then NAD+ was attached by using dicyclohexylcarbodi-imide; for preparation (b), AMP–Sepharose, N6-(6-aminohexyl)-AMP has been coupled directly to cyanogen bromide-activated gel. 2. Affinity columns of both gels retain only the two enzymes when a mixture of bovine serum albumin, lactate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase is applied. Subsequent elution with the cofactor NAD+ yields glyceraldehyde 3-phosphate dehydrogenase whereas lactate dehydrogenase is eluted by applying the same molarity of the reduced cofactor. 3. The binding of both glyceraldehyde 3-phosphate dehydrogenase and lactate dehydrogenase to the gel tested, AMP–Sepharose, is strong enough to resist elution by gradients of KCl of up to at least 0.5m. A 0.0–0.15m gradient of the competitive inhibitor salicylate, however, elutes both enzymes efficiently and separately. 4. The elution efficiency of lactate dehydrogenase from AMP–Sepharose has been examined by using a series of eluents under comparable conditions of concentration etc. The approximate relative efficiencies are: 0 (lactate); 0 (lactate+semicarbazide); 0 (0.5mm-NAD+); 80 (lactate+NAD+); 95 (lactate+semicarbazide+NAD+); 100 (0.5mm-NADH). 5. All contaminating lactate dehydrogenase activity can be removed from commercially available crude pyruvate kinase in a single-step procedure by using AMP–Sepharose.  相似文献   

7.
《Process Biochemistry》2010,45(4):598-601
One key problem of aqueous two-phase systems (ATPS) is that phase-forming polymers could not be recycled efficiently. This results in high cost and environmental pollution. In this study, we introduced novel aqueous two-phase systems which are composed by pH-sensitive polymer PADB and light-sensitive polymer PNNC. PNNC is enriched in the top phase while PADB is found in the bottom phase. And recoveries of two-phase-forming polymers can both reach over 96%. This aqueous two-phase system was used for purification of lipase from its crude material. The influences of various process parameters such as concentration of the phase-forming polymer, system pH, different types and concentrations of neutral salts on partitioning of lipase are evaluated. It has been found that partition coefficient of pure lipase could reach 0.061 under optimized conditions. Lipase from crude material was purified with 83.7% recovery and a purification factor of approximately 18 folds.  相似文献   

8.
The hydrophobically modified ethylene oxide polymer, HM-EO, was modified with an alkyl halide to prepare a hyamine-type HM-EO, named N-Me-HM-EO, which could be used for forming N-Me-HM-EO/buffer aqueous micellar two-phase system. The critical micelle concentration of N-Me-HM-EO solution and the phase diagrams of N-Me-HM-EO/buffer systems were determined. By using this novel aqueous micellar two-phase system, the separation of cytochrome P450 BM-3 from cell extract was explored. The partitioning behavior of P450 BM-3 in N-Me-HM-EO/buffer systems was measured. The influences of some factors such as total proteins concentration, pH, temperature and salt concentration, on the partitioning coefficients of P450 BM-3 were investigated. Since the micellar aggregates in the N-Me-HM-EO enriched phase were positively charged, it was possible to conduct the proteins with different charges to top or bottom phases by adjusting pH and salt concentration in the system. A separation scheme consisting of two consecutive aqueous two-phase extraction steps was proposed: the first extraction with N-Me-HM-EO/buffer system at pH 8.0, and the second extraction in the same system at pH 6.0. The recovery of P450 BM-3 was 73.3% with the purification factor of 2.5. The results indicated that the aqueous micellar two-phase system composed of hyamine modified polysoap has a promising application for selective separation of biomolecules depending on the enhanced electrostatic interactions between micelles and proteins.  相似文献   

9.
两水相体系在发展中存在的关键问题是相体系回收困难.由于生产成本及降低污染的原因, 用过的相体系需要回收和重复使用.用环境敏感型溶解可逆聚合物形成可回用两水相体系是当前是为可行的回收方法。本文在光敏感可回用高聚物PNBC与pH敏感型可回用高聚物PADB形成的两水相体系中进行固定化青霉素酰化酶的相转移催化青霉素G产生6-APA的反应。在这个两水相体系中,通过优化,在1% NaCl 存在下,6-APA的分配系数可达5.78。催化动力学显示,达平衡的时间近7h,反应最高得率约85.3%(pH 7.8, 20℃)。较相近条件下的单水相反应得率提高近20%。在反应过程中,通过底物及产物的分配系数检测,发现底物分配系数变化不大,而产物6-APA及苯乙酸的分配系数发生很大变化,从而引起产物的得率变化。在两水相中,底物及产物主要分配在上相,固定化酶分配在下相,底物青霉素G进入下相经酶催化产生的6-APA及苯乙酸又转入上相,从而解除了青霉素酰化酶催化反应的底物及产物抑制作用,达到提高产物得率的效果。此外,采用固定化酶较固定化细胞效率高,占用下相体积小,较游离酶稳定性高,且完全单侧分配在下相。因此,在两水相中进行固定化酶的催化反应具有明显的优越性。形成两水相的高聚物PNBC通过488 nm 的激光照射或经滤光的450nm 光源照射得到回收;pH敏感型成相聚合物PADB可通等电点 4.1沉淀可实现循环利用,高聚物的回收率在95%-98%之间,按此回收率计算,聚合物可使用60次以上。  相似文献   

10.
Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes.  相似文献   

11.
Bioconversions of corn starch and bovine hemoglobin in an aqueous two-phase system using α-amylase and papain immobilized on ultrafine silica particles (average diameter 15 nm) were studied. Both α-amylase and papain were immobilized onto the ultrafine silica particles with high efficiency by covalent cross-linking with glutaraldehyde, and both enzymes showed high activities. Since these immobilized enzymes were totally partitioned to the polyethylene glycol (PEG)-rich top phase in PEG/dextran aqueous two phase systems, the products were recovered from the bottom phase. These reaction systems were found to be effective for extractive bioconversions.  相似文献   

12.
Two rapid and easy-to-scale-up methods for the purification of cyclodextrin glycosyltransferase (CGTase) from Bacillus circulans were developed: affinity precipitation with starch and aqueous two-phase partition. The first method, optimised by a factorial design, gave an 80% CGTase adsorption at 11% starch and 1.6% ammonium sulphate, and a 65% recovery after elution with 10 mM α-cyclodextrin. The purification factor was 17. Aqueous two-phase partition yielded a 72% CGTase recovery in a two-step procedure; CGTase was obtained in the bottom phase with a purification factor of 37.  相似文献   

13.
The effect of decreasing the organic (octanol) to aqueous phase volume ratio was evaluated in a two-phase enzymatic process for (R)-phenylacetylcarbinol (PAC) production. Decreasing the ratio from 1:1 to 0.43:1 at 4°C increased PAC in the organic phase from 112 g/l to 183 g/l with a 10% improvement in overall productivity. Interestingly, the rate of enzyme (pyruvate decarboxylase) activity loss was unaffected by the reduced phase ratio over the reaction period (48 h). At 20°C and 0.43:1 phase ratio the organic phase PAC concentration increased to 212 g/l and the overall productivity increased by 30% although the PAC yield (based on pyruvate) declined by about 10% due to greater byproduct acetoin formation at the higher temperature. Product recovery in such a system is facilitated both by the higher PAC concentration and the reduced organic phase volume.  相似文献   

14.
An aqueous two-phase system based on the two polymers poly(ethylene glycol) and dextran has been used for the fractionation of cellulase enzymes present in culture liquid obtained by fermentation with Trichoderma reesei. The activities of beta-glucosidase and glucanases were separated to high degree by using the two-phase systems for a counter-current distribution process in nine transfer steps. While the glucanases had high affinity to the poly(ethylene glycol) rich top phase the beta-glucosidase was enriched in the dextran-containing bottom phase. Multiple counter-current distribution performed indicates the heterogeneity of beta-glucosidase activities assuming at least four isoenzyme forms. One step concentration of beta-glucosidase by using system with 46:1 phase volume ratio resulted in 16 times higher enzyme activity.  相似文献   

15.
Aqueous/organic two-phase systems have been evaluated for enhanced production of (R)-phenylacetylcarbinol (PAC) from pyruvate and benzaldehyde using partially purified pyruvate decarboxylase (PDC) from Candida utilis. In a solvent screen, octanol was identified as the most suitable solvent for PAC production in the two-phase system in comparison to butanol, pentanol, nonanol, hexane, heptane, octane, nonane, dodecane, methylcyclohexane, methyl tert butyl ether, and toluene. The high partitioning coefficient of the toxic substrate benzaldehyde in octanol allowed delivery of large amounts of benzaldehyde into the aqueous phase at a concentration less than 50 mM. PDC catalyzed the biotransformation of benzaldehyde and pyruvate to PAC in the aqueous phase, and continuous extraction of PAC and byproducts acetoin and acetaldehyde into the octanol phase further minimized enzyme inactivation, and inhibition due to acetaldehyde. For the rapidly stirred two-phase system with a 1:1 phase ratio and 8.5 U/mL carboligase activity, 937 mM (141 g/L) PAC was produced in the octanol phase in 49 h with an additional 127 mM (19 g/L) in the aqueous phase. Similar concentrations of PAC could be produced in the slowly stirred phase separated system at this enzyme level, although at a much slower rate. However at lower enzyme concentration very high specific PAC production (128 mg PAC/U carboligase at 0.9 U/mL) was achieved in the phase separated system, while still reaching final PAC levels of 102 g/L in octanol and 13 g/L in the aqueous phase. By comparison with previously published data by our group for a benzaldehyde emulsion system without octanol (50 g/L PAC, 6 mg PAC/U carboligase), significantly higher PAC concentrations and specific PAC production can be achieved in an octanol/aqueous two-phase system.  相似文献   

16.
The effect of the order of system assembly was studied in two-stage aqueous two-phase systems loaded with whole bovine blood and BSA. Recovery in the bottom phase of the back extraction varied by up to 40% depending on the manner in which the forward extraction was assembled, significantly impacting upon the efficiency of the process. The effect of mixing intensity was investigated using a simple shear device. As expected, higher shear rates were found to facilitate mass transfer and shorten the time taken to reach equilibrium. Mixing at lower shear rates for extended periods resulted in a lower recovery of protein.  相似文献   

17.
A method for the release of intracellular enzyme by autolysis of Bacillus subtilis cells is presented. Both the growth and lysis processes were further applied to aqueous two-phase systems (ATPS). Lysis induced by the addition of Triton X-100 and by low-temperature treatment facilitated the release of cytoplasmic enzyme glucose-6-phosphate dehydrogenase (G6PDH) in ATPS. The release selectivity increased when lysis was regulated by the addition of 50 μM or 100 μM Triton X-100. Cardiolipin efficiently inhibited the autolytic process. Control of the autolytic system promoted the selective release of G6PDH. B. subtilis cells could be grown and lysed in aqueous two-phase systems in a similar fashion to the conventional single-phase medium solutions. The released enzymes were partitioned according to their surface properties. G6PDH were extracted to the top phase in a PEG1540/Dex100K-200K sytem. Cells were partitioned to the bottom phase or the interface, and could be recycled into the fermentor. The selectivity of enzyme production was also increased in two-phase systems by the addition of cardiolipin.  相似文献   

18.
Summary Partition and production of the extracellular chitinase from Serratia marcescens were studied in PEG/dextran aqueous two-phase systems. The enzyme partitions into the bottom phase and the cells segregate into the top phase. The best system is 2% (w/v) PEG 20000 and 5% (w/v) dextran T500. The cell growth and enzyme production kinetics are similar in the aqueous two-phase system and in the polymer-free reference system. However, the maximum enzyme concentration in the former system is 1.5 times that in the latter one.  相似文献   

19.
The physical behavior of the binary phase systems of the non-ionic polyoxyethylene detergent Agrimul NRE 1205 and water was investigated. This technical detergent can be used for the large-scale recovery of biomolecules in detergent based aqueous two-phase systems. The phase diagram was determined. It shows significant and unexpected differences to highly purified detergents. Very similar to neat detergents the phase diagram can be influenced by auxiliary chemicals thus shifting the entire phase diagram in general to lower temperatures. This was demonstrated by lowering the cloud-point by various additions. The concentration factor, as an important parameter of a first capture step in purification was investigated and modeled. Auxiliary chemicals, temperature change and change in detergent concentration also influence the viscosity and density of the phases. These experimental data are shown. They can help to explain the separation behavior of proteins. In large-scale separations aqueous two-phase systems are separated using disc-stack centrifuges. It is demonstrated that this is not a feasible method for detergent-based aqueous two-phase extraction and the physical reason is presented.  相似文献   

20.
Isolation of plasmid DNA from cell lysates by aqueous two-phase systems   总被引:1,自引:0,他引:1  
This work presents a study of the partitioning of a plasmid vector containing the cystic fibrosis gene in polyethylene glycol (PEG)/salt (K2HPO4) aqueous two-phase systems (ATPS). The plasmid was extracted from neutralized alkaline lysates using PEG with molecular weights varying from 200 to 8000. The effects of the lysate mass loaded to the ATPS (20, 40, and 60% w/w) and of the plasmid concentration in the lysate were evaluated. The performance of the process was determined by qualitative and quantitative assays, carefully established to overcome the strong interference of impurities (protein, genomic DNA, RNA), salt, and PEG. Plasmid DNA partitioned to the top phase when PEG molecular weight was lower than 400. The bottom phase was preferred when higher PEG molecular weights were used. Aqueous two-phase systems with PEG 300, 600, and 1000 were chosen for further studies on the basis of plasmid and RNA agarose gel analysis and protein quantitation. The recovery yields were found to be proportional to the plasmid concentration in the lysate. The best yields (>67%) were obtained with PEG 1000. These systems (with 40 and 60% w/w of lysate load) were able to separate the plasmid from proteins and genomic DNA, but copartitioning of RNA with the plasmid was observed. Aqueous two-phase systems with PEG 300 concentrated both plasmid and proteins in the top phase. The best system for plasmid purification used PEG 600 with a 40% (w/w) lysate load. In this system, RNA was found mostly in the interphase, proteins were not detected in the plasmid bottom phase and genomic DNA was reduced 7.5-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号