首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At high cellobiose concentrations, the cellobiase activity of a Trichoderma reesei cellulase preparation does not follow Michaelis–Menten kinetics and shows substrate inhibition. Several rate equations were fitted to the initial rate-cellobiose concentration data. The best fit is obtained for a rate equation corresponding to partial substrate inhibition of cellobiase. In this case, the Km, Vmax and KI values obtained are 1.1 mM, 16 IU ml–1 and 26 mM, respectively.  相似文献   

2.
固定化纤维二糖酶的研究   总被引:5,自引:0,他引:5  
黑曲霉 (AspergillusnigerLORRE 0 12 )的孢子中富含纤维二糖酶 ,将这些孢子用海藻酸钙凝胶包埋后 ,可以方便有效地固定纤维二糖酶。固定化后的纤维二糖酶性能稳定 ,半衰期为 38d ,耐热性和适宜的pH范围均比固定化前有所增加 ,其Km 和Vmax值分别为 6 .0 1mmol L和 7.0 6mmol (min·L)。利用固定化纤维二糖酶重复分批酶解10g L的纤维二糖 ,连续 10批的酶解得率均可保持在 97%以上 ;采用连续酶解工艺 ,当稀释率为 0 .4h- 1 ,酶解得率可达 98.5 %。玉米芯经稀酸预处理后 ,其纤维残渣用里氏木霉 (Trichodermareesei)纤维素酶降解 ,酶解得率为6 9.5 % ;通过固定化纤维二糖酶的进一步作用 ,上述水解液中因纤维二糖积累所造成的反馈抑制作用得以消除 ,酶解得率提高到 84.2 % ,还原糖中葡萄糖的比例由 5 3 .6 %升至 89.5 % ,该研究结果在纤维原料酶水解工艺中具有良好的应用前景。  相似文献   

3.
Summary A system coupling fermentor and decantor permitted strong accumulation of yeast flocs that were homogeneously suspended in the reactional volume. At 100–190 g/l glucose feed practically total substrate conversion was attained. At 130 g/l glucose feed the highest productivity (18.4 g.l.h) and the highest ethanol yield (90.6%) were reached with biomass levels of 80–90 g/l. We observed that the stability of this system is limited when a critical fermentation rate (D.So) close to 39–40 g/l.h (with corresponding ethanol productivities of 19–20 g/l.h) is reached. Higher fermentation rates provoked de-flocculation and lost of biomass.Symbols D dilution rate (h–1) - E ethanol (g/l) - Sr residual substrate (g/l) - So substrate in the feed (g/l) - X biomass (g/l) - ethanol yield (%) - DSo fermentation rate (g/l.h) (for Sr0) - PE ethanol productivity (g/l.h)  相似文献   

4.
The inhibition pattern was identified for a reaction system composed of Trichoderma reesei cellulase enzyme complex and lime-pretreated corn stover. Also, the glucose inhibition effect was quantified for the aforementioned reaction system over a range of enzyme loadings and substrate concentrations. Lastly, the range of substrate concentrations and enzyme loadings were identified in which the linear form of the simplified HCH-1 Model is valid. The HCH-1 Model is a modified Michaelis-Menton Model with non-competitive inhibition and the fraction of insoluble substrate available to bind with enzyme. With a high enzyme loading, the HCH-1 Model can be integrated and simplified in such a way that sugar conversion is linearly proportional to the logarithm of enzyme loading. A wide range of enzyme loadings (0.25-50 FPU/g dry biomass) and substrate concentrations (10-100g/L) were investigated. All experiments were conducted with an excess cellobiase loading to ensure the experimental results were not influenced by cellobiose inhibition. A non-competitive inhibition pattern was identified for the corn stover-cellulase reaction system, thereby validating the assumptions of the HCH-1 Model. At a substrate concentration of 10 g/L, glucose inhibition parameters of 0.986 and 0.979 were measured for enzyme loadings of 2 FPU/g dry biomass and 50 FPU/g dry biomass, respectively. At 5 FPU/g dry biomass, glucose inhibition parameters of 0.985 and 0.853 were measured for substrate concentrations of 10 and 100g/L, respectively. The linear form of the HCH-1 Model predicted biomass digestibility for lime-pretreated corn stover over an enzyme loading range of 0.25-50 FPU/g dry biomass and substrate concentration range of 10-100g/L.  相似文献   

5.
Optimization of the culture medium is essential for the production of a large biomass of high ice-nucleating-active micro-organisms such as Pseudomonas syringae. Cultures in bioreactors show that optimal substrate concentrations are approximately the same for ice nucleating activity (INA) and total biomass (50–80 g/l of glucose; 28 g/l of peptone) but not for the growth rate. The INA is lowest when the growth rate is highest (50 g/l of glucose, 15 g/l of peptone). We have shown that the maximal biomass production and INA are related to the C/N ratio (optimal ratio: 10) rather than to the substrate concentration. These results also contribute to knowledge on the physiology of these bacteria and support the sequential maturation of the ice nucleating sites.  相似文献   

6.
Sporulation of Coniothyrium minitans on 20 g glucose/l or 18 g starch/l at an initial C/N ratio of 10 was the lowest for nitrate and histidine (1 × 109 vs 5–6 × 109 spores/dish). At 100 g glucose/l or 90 g starch/l lower spore numbers as compared to the lower concentrations are obtained for all nitrogen sources tested; only the spore numbers with urea and glycine were equal with either 18 or 90 g starch/l. Spore numbers at 90 g starch/l were all a factor two or more higher than at 100 g glucose/l.  相似文献   

7.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation.  相似文献   

8.
Summary In the combined ion exchange/biological denitrification process for nitrate removal from ground water, in which nitrate is removed by ion exchange, the resins are regenerated in a closed circuit by a biological denitrification reactor. This denitrification reactor eliminates nitrate from the regenerant. Methanol is used as electron donor for biological denitrification. To obtain sufficient regeneration of the resins within a reasonable time, high NaCl or NaHCO3 concentrations (10–30 g/l) in the regenerant are necessary. High NaHCO3 concentrations affected the biological denitrification in three ways: a) a slight decrease in denitrification capacity (30%) was observed; b) the yield coefficient and CH3OH/NO3 -–N ratio decreased. When high NaHCO3 concentrations (above 10g NaHCO3/l) were used, the yield coefficient was 0.10–0.13 g VSS/g NO3 -–N and the CH3OH/NO3 -–N ratio was 2.00–2.03 g/g; c) high NaHCO3 concentrations influenced nitrite production. Nitrite is an intermediate product of biological denitrification and with rising NaHCO3 concentrations nitrite accumulation was suppressed. This was explained by the effect of high NaHCO3 concentrations on the pH in the microenvironment of the denitrifying organisms. High NaCl concentrations also resulted in a slight decrease in denitrification capacity, but the second and third effects were not observed in the presence of high NaCl concentrations.Although the pH in the regenerant will rise as a result of biological denitrification, the capacity of a denitrification reactor did not decrease significantly when a pH of 8.8–9.2 was reached.  相似文献   

9.
Cellulase production using corn cob residue from xylose manufacture as substrate was carried out by Trichoderma reesei ZU-02. It was found that on the same cellulose basis, the cellulase activity and yield produced on corn cob residue were comparable with that on purified cellulose. Under batch process, the optimum concentration of substrate was 40 g/l and the optimum C/N ratio was 8.0. In 500 ml flasks, cellulase activity reached 5.25 IU/ml (213.4 IU/g cellulose) after seven days' cultivation. In a 30 m(3) stirred fermenter for large scale production, cellulase and cellobiase activity were 5.48 IU/ml (222.8 IU/g cellulase) and 0.25 IU/ml (10.2 IU/g cellulose), respectively, after four days' submerged fermentation. The produced cellulase could effectively hydrolyze the corn cob residue, and the yield of enzymatic hydrolysis reached 90.4% on 10% corn cob residue (w/v) when the cellulase dosage was 20 IU/g substrate.  相似文献   

10.
Direct fermentation of gelatinized sago starch into solvent (acetone–butanol–ethanol) by Clostridium acetobutylicum P262 was studied using a 250 ml Schott bottle anaerobic fermentation system. Total solvent production from fermentation using 30 g sago starch/l (11.03g/l) was comparable to fermentation using corn starch and about 2-fold higher than fermentation using potato or tapioca starch. At the range of sago starch concentration investigated (10–80 g/l), the highest total solvent production (18.82 g/l) was obtained at 50 g/l. The use of a mixture of organic and inorganic nitrogen source (yeast extract + NH4NO3) enhanced growth of C. acetobutylicum, starch hydrolysis and solvent production (24.47 g/l) compared to the use of yeast extract alone. This gave the yield based on sugar consumed of 0.45 g/g. Result from this study also showed that the individual concentrations of nitrogen and carbon influenced solvent production to a greater extent than did carbon to nitrogen (C/N) ratio.  相似文献   

11.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

12.
The relationship between substrate inhibition and maintenance energy ofChlamydomonas reinhardtii grown heterotrophically on acetate was investigated. At low acetate concentrations (<0.4 g l–1), where no inhibition of cell growth was observed, the cell growth yield and specific growth rate could be represented by the Pirt model, 1/Y=1/Y g +m/ with a constant value of maintenance energy coefficient m. However, at high acetate concentrations (>0.4 g l–1), inhibition of cell growth occurred, in which m became variable and dependent on the acetate concentration. A simple mathematical model was proposed to predict the actual maintenance energy coefficient m in the inhibited cultures and experimentally validated.Author for correspondence  相似文献   

13.
Cellobiase (CE 3.2.1.21) is a β-glucosidase which hydrolyzes cellobiose to glucose and is known to be subject to both product and substrate inhibition. This work report a model which combines both product and substrate inhibition effects for cellobiase isolated from a commercial preparation of Trichoderma viride from Miles Laboratories (Elkhart, IN). An integrated rate equation is presented which predicts the trends of time courses for hydrolyses of cellobiose a t concentrations ranging from 14.6–1416mM cellobiose. The constants used in the model (determined from initial rate data) are compared to those reported for cellobiase obtained from other sources of T. Viride. Most notable in this comparison is the apparently higher activity and reduced inhibition of this enzyme compared to other sources of cellobiase.  相似文献   

14.
Summary Structural and kinetic parameters of the -d-glucosidase (cellobiase, -d-glucoside glucohydrolase) from Coriolus versicolor have been determined. It is a high molecular weight glycoprotein (300,000 d) composed 10% by weight of protein, 90% by weight of carbohydrate in which glucose is the primary hexose sugar. The Km for 4-nitrophenyl--d-glucopyranoside (4 NPG) and cellobiose are 0.276 and 2.94 mM respectively at pH 4.5 and 40°. d-Glucose is a competitive inhibitor with a Ki of 1.8 mM with 4 NPG as substrate, and at high concentrations, cellobiose exhibits a substrate inhibition effect on the enzyme, so negating attempts to overcome the competitive inhibition of glucose by increasing the concentration of the substrate.  相似文献   

15.
Summary CMCase and -glucosidase were produced by the mutantNeurospora crassa 40b cultivated on untreated wheat straw in a solid state fermentation. Best enzyme activities were observed when the growth medium was composed of wheat straw mixed with certain mineral solutions at a ratio 1:2 (w/v). A partially purified enzyme preparation showed optimum enzyme activities of CMCase and -glucosidase at pH 4.0 and 5.0 and temperature 50 and 60°C respectively. The apparent Km values for the same enzymes were 16.8 g/l and 1.03x10–4 M respectively. At optimum growth and enzyme assay conditions yields as high as 586.2 U CMCase and 58.4 U -glucosidase per gram of straw were obtained.  相似文献   

16.
The effects of the chemical composition of water on granular sludge formation and characteristics in a denitrifying upflow sludge-blanket (USB) reactor were studied. Denitrification of drinking water showed different biomass sludge characteristics when the reactor was fed with groundwater as opposed to surface water. USB reactors fed with groundwater produced granules with good settling characteristics, SVI (sludge volume index) values lower than 30 ml/g, and high reactor biomass concentrations (20–25 g/l), while surface-water-fed reactors exhibited lower biomass concentrations (10–15 g/l) due to poor settling characteristics (SVI values of 50–90 ml/g). Sludge granules from the reactor fed with surface water had a low mineral content of between 10% and 20% as compared to a mineral content of 25%–50% in the groundwater reactor. The larger mineral content in the groundwater-fed reactor was due to a greater precipitation potential, i.e. higher concentrations of calcium and alkalinity present in groundwater combined with the release of alkalinity and subsequent increase in pH caused by biological denitrification. Verification for this phenomenon was established by enriching surface water with calcium and alkalinity, which increased the reactor's precipitation potential from 15 mg/1 to 40 mg/1 (as CaCO3). The granules obtained from the reactor fed with enriched surface water had a high mineral content of between 40% and 50% and very low SVI values, contributing to improved granule-settling characteristics and reactor stability.  相似文献   

17.
Summary A new variant, Candida boidinii variant 60, which is less sensitive to methanol and formaldehyde shocks was grown in continuous cultures with methanol as sole carbon source. The substrate concentration in the feeding medium was either 1% methanol or 3% methanol. Biomass production, methanol consumption, the formation of formaldehyde and gas exchange were measured at different dilution rates. With low methanol feeding (10 g/l) maximal productivity of 0.44 g biomass/l·h is obtained at a dilution rate of 0.14 h–1. Maximal specific growth rate is 0.18 h–1. A yield of 0.32 g biomass/g methanol was obtained and the respiration quotient was determined as 0.55. Independently of initial substrate concentration, biomass decreases if methanol and formaldehyde are accumulating in the culture broth.In the culture with high methanol feeding (30 g/l) cell concentratioon increases up to 9 g/l at D=0.04 h–1. At higher dilution rates methanol and form-aldehyde appear in the medium. Formaldehyde is then preferably oxidized without energy advantages for the cells. It seems that this enables the cells to overcome toxic effects caused by methanol and formaldehyde.  相似文献   

18.
Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 × 109 cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%–70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semidefined medium, dilution rates up to 0.31 h–1 could be used, which gave higher volumetric productivities (0.96 g l–1 h–1 for propionic acid and 0.26 g l–1 h–1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria.Journal paper no. J- 15614 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. 3122  相似文献   

19.
Batch kinetics for sorbitol to sorbose bioconversion was studied at 20% sorbitol concentration. The culture featured 90% conversion of sorbitol to sorbose in 20 hours. Increasing the initial substrate concentration in the bioreactor decreased the culture specific growth rate. At 40% initial sorbitol concentration no culture growth was observed. The batch kinetics and substrate inhibition studies were used to develop the Mathematical Model of the system. The model parameters were identified using the original batch kinetic data (S o =20%). The developed mathematical model was adopted to fed-batch cultivation with the exponential nutrient feeding. The fed-batch model was simulated and implemented experimentally. No substrate inhibition was observed in the fed-batch mode and it provided an overall productivity of 12.6?g/l-h. The fed-batch model suitably described the experimentally observed results. The model is ready for further optimization studies.  相似文献   

20.
The evidence, kinetic aspects, and modelization of the inhibitory effect of glycerol on dihydroxyacetone (DHA) production byGluconobacter oxydans have been studied. The comparison of the maximal productivities and specific rates evaluated for initial concentrations of 31, 51, 76, 95, and 129 g L–1 of substrate showed that glycerol exerts an inhibitory effect both on growth and DHA production: decrease of the growth-specific rate and of the specific rate of DHA production with increase of the initial glycerol content. The inhibition phenomenon was attributed to an immediate effect of glycerol on the biological activity. It was also established that the presence of glycerol at high concentration induces an increase in the time necessary for the cells to reach their maximal level of specific rates. This result tends to show that glycerol brings into play on the biological system the capacity to reach its optimal range of activity. The main models found in the literature dealing with substrate inhibition phenomena were then tested on experimental data. The exponential model describes at best the glycerol inhibition on growth (=0.53e(–S/93.6)) and on DHA production (qP=7e(–S/76.7)). The kinetic study and modelization of the inhibition effect of glycerol on DHA production allows one, therefore, to fill the gap in the fundamental knowledge of this industrial fermentation, to show the maladjustment of the classical fermentation process used (batch), and to reconsider the conception for the optimization of the production (proposition of more adapted process like fed-batch and/or biphasic systems).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号