首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SH3 and multiple ankyrin (ANK) repeat domain 3 (SHANK3) is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. SHANK3 plays an important role in the formation and maturation of excitatory synapses. In the brain, SHANK3 directly or indirectly interacts with various synaptic molecules including N-methyl-D-aspartate receptor, the metabotropic glutamate receptor (mGluR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Previous studies have shown that Autism spectrum disorder is a result of mutations of the main SHANK3 isoforms, which may be due to deficit in excitatory synaptic transmission and plasticity. Recently, accumulating evidence has demonstrated that overexpression of SHANK3 could induce seizures in vivo. However, little is known about the role of SHANK3 in refractory temporal lobe epilepsy (TLE). Therefore, we investigated the expression pattern of SHANK3 in patients with intractable temporal lobe epilepsy and in pilocarpine-induced models of epilepsy. Immunofluorescence, immunohistochemistry, and western blot analysis were used to locate and determine the expression of SHANK3 in the temporal neocortex of patients with epilepsy, and in the hippocampus and temporal lobe cortex of rats in a pilocarpine-induced epilepsy model. Double-labeled immunofluorescence showed that SHANK3 was mainly expressed in neurons. Western blot analysis confirmed that SHANK3 expression was increased in the neocortex of TLE patients and rats. These results indicate that SHANK3 participates in the pathology of epilepsy.  相似文献   

2.
Luo J  Zeng K  Zhang C  Fang M  Zhang X  Zhu Q  Wang L  Wang W  Wang X  Chen G 《Neurochemical research》2012,37(7):1381-1391
The Collapsin Response Mediator Protein-1 (CRMP-1) is a brain specific protein identified as a signaling molecule of Semaphorin-3A and act as axon repellent guidance factor in nervous system. Recent studies indicated that axon guidance molecules may play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. This study aimed to investigate expression pattern of CRMP-1 in epileptogenesis. Using double immunofluorescence labeling, immunohistochemistry and western blot analysis, we looked into the CRMP-1 expression in temporal neocortex from patients with temporal lobe epilepsy (TLE) and histological normal temporal neocortex from the controls. We also studied the expression pattern of CRMP-1 in hippocampus and adjacent cortex of a TLE rat model on 6, 24, 72 h, 1, 2 weeks, 1 month, and 2 months post-seizure, and from control rats. CRMP-1 was mainly expressed in the neuronal cytoplasm in the temporal lobe of intractable TLE patients, which was co-expressed with -2. CRMP-1 expression was downregulated in temporal neocortical of TLE patients. In addition, in pilocarpine-induced animal model of epilepsy, CRMP-1 dynamically decreased in a range of 2 months. Thus, our results indicate that CRMP-1 may be involved in the development of TLE.  相似文献   

3.
4.
Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid‐induced rat epilepsy model to investigate whether Wnt/β‐catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β‐catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up‐regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid‐induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β‐catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β‐catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β‐catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy.  相似文献   

5.
6.
Abstract: Neuritic sprouting and disturbances of calcium homeostasis are well described in epilepsy. S100β is an astrocyte-derived cytokine that promotes neurite growth and induces increases in levels of intracellular calcium in neurons. In sections of neocortex of surgically resected temporal lobe tissue from patients with intractable epilepsy, we found that the number of S100β-immunoreactive astrocytes was approximately threefold higher than that found in control patients ( p < 0.001). These astrocytes were activated, i.e., enlarged, and had prominent processes. Temporal lobe tissue levels of S100β were shown by ELISA to be fivefold higher in 21 epileptics than in 12 controls ( p < 0.001). The expression of the astrocyte intermediate filament protein, glial fibrillary acidic protein, was not significantly elevated in epileptics, suggesting a selective up-regulation of S100β expression. Our findings, together with established functions of S100β, suggest that this neurotrophic cytokine may be involved in the pathophysiology of epilepsy.  相似文献   

7.
Epithelial membrane protein-1 (EMP-1), called Tumor-associated membrane protein, is the marker of a drug-resistant tumor and take part in the drug-resistant mechanism of tumor, with the relationship of epidermal growth factor receptor (EGFR). Because there are some similarities between the pathogenesis and the drug resistance mechanism of tumor and the drug resistance mechanisms in epilepsy. EMP1 expression may be connected with the drug-resistance mechanism of epilepsy. We detected EMP-1 by gene scanning and immunohistochemistry staining, comparing the IE group and the control group, and we investigated the relationship between EMP-1 and EGFR by double-label immunofluorescence staining in the IE group. We found expression of EMP-1 mRNA was higher in IE per the gene scanning, EMP-1 immunoreactivity was apparent in neurons of IE patients but not in the control group, and the expression of EMP-1 and EGFR occurred in the same neuron. We confirm EMP-1 is abnormally expressed in IE and suggest the interaction of EGFR and EMP-1 plays a role in the mechanism of drug resistance in epilepsy and may be a new gene for drug resistance.  相似文献   

8.
J. Victor Nadler 《Life sciences》1981,29(20):2031-2042
Temporal lobe epilepsy (limbic epilepsy, complex partial epilepsy, psychomotor epilepsy) is the most devastating form of epilepsy commonly encountered in the adult population. The attacks involve loss of consciousness, thus limiting performance of normal functions and exposing the individual to bodily injury. Moreover, long-standing or pharmacologically intractable temporal lobe epilepsy is frequently associated with the loss of neurons from the hippocampus and other brain regions (Ammon's horn sclerosis (AHS)). Unfortunately, pharmacologically intractable cases are rather common, owing to the relatively low efficacy against this condition of the available anticonvulsants. Progress in the understanding and treatment of temporal lobe epilepsy would be greatly facilitated by the availability of an animal model which reproduced the behavioral, electrographic and pathological features of this condition. Here I review evidence which indicates that the kainic acid (KA)-treated rat possesses many of the features required of such a model.  相似文献   

9.
10.
Epileptic temporal and parietal cortices, removed from 6 patients with therapy-resistant (intractable) partial epilepsy (TRPE) during neurosurgery, were studied. Neurons (40–50 in each slice) in laminae I–VI and white matter were injected with Lucifer Yellow (LY). Samples were examined in a confocal laser scanning microscope (BioRad [Richmond, CA] MRC 600), and individual cells were scanned at 0.1–2 μm incremental levels. 2D maximal linear projection was used for overview. Frames (50–60) of scanned neurons were transformed into 3D volumes, using VoxelView software on a Silicone Graphics workstation, and rotated. All samples contained pyramidal neurons with duplicated apical dendrites, additional basal dendrites, or were misplaced in a horizontal position in the white matter. Rarely were such cells observed in normal cases. The relation between the observations and the disease is discussed. The attempt to simultaneously apply immunofluorescence was successful concerning synaptic vesicle antigens. This approach will be used for a detailed study of the synaptology of this disease.  相似文献   

11.
IntroductionWhen ictal and interictal brain SPECT are reconstructed with filtered backprojection (FBP), the noise level of subtraction images is frequently high and requires the use of thresholding methods. The aim of this study was to compare the subtraction images for cerebral SPECT reconstructed either with FBP or with a 3D iterative reconstruction method (OSEM-3D).Material and methodsAfter optimisation of the reconstruction parameters on phantom, the subtraction SPECT images, which were obtained with FBP or with OSEM-3D and coregistered with MRI images, were analyzed in 15 patients with refractory temporal epilepsy.ResultsOn phantom and with the constrain of high enough spatial resolution (full width at half of maximum for a punctual source less than or equal to 11 mm) were reached using: (i) a Butterworth filter with a cut-off frequency of 0.4 Nyquist at order 6 for FBP and (ii) five iterations, 16 subsets and a 9 mm gaussian filter for OSEM-3D. On the subtraction images, which were obtained with these optimal parameters, the temporal foci from patients were smaller with OSEM-3D than with FBP (11 ± 6 cm3 versus 17 ± 10 cm3, P = 0.02), mean voxel activities were equivalent between the two methods within temporal foci (6.30 ± 3.13 counts versus 6.34 ± 4.93 counts) but these activities were dramatically reduced by OSEM-3D within background regions (0.02 ± 0.02 counts versus 0.19 ± 0.12 counts, P < 0.001).ConclusionFor the ictal–interictal subtraction SPECT images, which are obtained in patients with refractory temporal epilepsy, the use of an optimized OSEM-3D method leads to dramatically reduce the volume of temporal foci, as well as the background noise level, two properties that are likely to facilitate the detection and localisation of epilepsy foci.  相似文献   

12.
Purinergic P2X3 receptors (P2X3Rs) play extensive roles in nerve cells in the central nervous system, particularly in hyperexcitability and calcium (Ca2+) influx. However, the role of P2X3Rs in epilepsy has not been previously investigated. To determine the relationship between P2X3Rs and epilepsy, the expression and cellular location of P2X3Rs in patients with intractable temporal lobe epilepsy (TLE) and in a lithium chloride-pilocarpine-induced chronic rat model of epilepsy were assessed. Furthermore, the function of P2X3Rs was assessed in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to evaluate the expression levels of P2X3Rs in brain tissues from TLE patients and an epileptic rat model, whereas immunofluorescence labeling was applied to determine the distribution of target proteins. Whole-cell recording was subsequently performed to identify the influence of P2X3Rs on seizure-like discharges. P2X3Rs were located at the cell bodies and dendrites of neurons with significantly increased expression in the TLE patients and epileptic rat model. In vitro, P2X3R activation accelerated sustained repetitive firing, whereas P2X3R inhibition led to relatively low-frequency discharges. To the best of our knowledge, this is the first study provide evidence that upregulated P2X3R expression exists in both epileptic humans and rats and may aggravate the epileptic state in vitro. Thus, P2X3Rs may represent a novel therapeutic target for antiepileptic drugs.  相似文献   

13.
ObjectivesThe coverage policies of many commercial insurers in the United States do not include coverage of stereotactic radiosurgery (SRS) for intractable epilepsy despite recent Level I evidence supporting its efficacy. We sought to assess the efficacy of an evidence-based methodology in obtaining coverage approval of SRS for intractable epilepsy.Patients and MethodsThe clinical policy guidelines from five of the largest United States commercial insurers were reviewed for their language regarding coverage of SRS for epilepsy. An evidence-based questionnaire was created for temporal lobe epilepsy and extratemporal lobe epilepsy based on recent evidence. Telephone interviewers of Insurers assessed the likelihood of SRS coverage for an epilepsy patient meeting the clinical inclusion criteria in the questionnaire. This likelihood was assessed numerically based on interviewee response (2 = yes, 1 = dependent on peer-to-peer, 0 = no).ResultsOf the five policy guidelines, none included literature more recent than 2017. For TLE, 3/5 insurance companies indicated likely SRS coverage; 2/5 indicated peer-to-peer discussion dependence for patients meeting questionnaire criteria for a score of 8/10. For extratemporal TLE, 2/5 companies indicated likely SRS coverage and 3/5 indicated peer-to-peer discussion dependence for a total score of 7/10.ConclusionCreation of an evidence-based methodology in approaching commercial insurers greatly increased the likelihood of SRS coverage for an indication (intractable epilepsy) widely perceived as investigational. These results should pave the way for epilepsy patients to receive coverage should they be appropriate SRS candidates.  相似文献   

14.
15.

Background  

Epilepsy is a neurological disorder, characterized by recurrent unprovoked seizures which have a high impact on the individual as well as on society as a whole. In addition to the economic burden, epilepsy imposes a substantial burden on the patients and their surroundings. Patients with uncontrolled epilepsy depend heavily on informal care and on health care professionals. About 30% of patients suffer from drug-resistant epilepsy. The ketogenic diet can be a treatment of last resort, especially for children. The beneficial effect of the ketogenic diet has been proven, but information is lacking about its cost-effectiveness. In the current study we will evaluate the (cost-) effectiveness of the ketogenic diet in children and adolescents with intractable epilepsy.  相似文献   

16.
王巍  王玮 《生物磁学》2009,(5):970-972
癫痫作为一种严重危害人类健康的常见病、多发病,其致病机理至今尚未阐明。30—60%的患者药物治疗无效,称“难治性癫痫”。随着现代医学的发展,外科手术的开展对于癫痫患者治疗也没有满意的效果。这就对于我们探求癫痫患者病灶的起源有了更深层次的要求。大量动物实验表明,海马作为中枢神经系统的重要结构不仅同学习、记忆、情绪等密切相关,还同癫痫的发生发展有着重要的联系。本文就大脑可塑性与癫痫的关系进行综述。  相似文献   

17.
Aim: Intractable epilepsy is characterized of seizure resistance to the anti-epileptic drugs. The underlying mechanisms are still elusive. Alterations of synaptic vesicle traffic may be one of the candidate mechanisms. Methods: Phenytoin-resistant and phenytoin-non resistant epileptic rats were selected in the amygdala kindled adult male Wistar rats. Synaptotagmin-I and clathrin were determined by cDNA microarry analysis and Western blotting in the hippocampus of phenytoin-resistant and phenytoin-nonresistant kindled rats, which were associated with the exocytosis and endocytosis of the synaptic vesicle traffic. Results: Microarry analysis showed both synaptotagmin-I and clathrin mRNA were up-regulated at least 3.06 fold accompanied with their correspondent proteins increased by 52.3 ± 6.4 % and 76.7 ± 12.4 % respectively in the hippocampus of phenytoin-resistant rats as compared with those in phenytoin-nonresistant rats. There were no significant differences in plasma phenytoin concentrations between the two groups. Conclusions: The increased expressions of synaptotagmin-I and clathrin in the hippocampus of phenytoin-resistant kindled rats play a role in the development of intractable epilepsy.  相似文献   

18.
Insulin like growth factor-1 (IGF-1) plays an important role in the proliferation and differentiation of neural progenitor cells. The effects of IGF-1 can be regulated by insulin like growth factor binding protein-3 (IGFBP-3) which can either inhibit or stimulate the proliferation of cells depending on the expression of proteases that can release IGF-1 from IGF1-IGFBP3 complex. Although IGF-1 is essential for the development of brain, both IGFBP-3 and IGF-1 are elevated in the brains of children younger than 6 months of age. Likewise, IGFBP-3 is also upregulated following cerebral ischemia and hypoxia. However, the role of IGFBP-3 in neurogenesis is not clear. Using an in vitro culture system of rat neural progenitor cells, we demonstrate that IGFBP-3 specifically regulates the IGF-1 mediated neural progenitor cell proliferation via down regulation of phopho-Akt, and cyclin D1. In addition, IGFBP-3 also decreased the content of nestin in the neural progenitor cells indicating its potential role in neurogenesis.  相似文献   

19.
We investigated whether alterations in glutamate metabolising glutamine synthetase activity occur in human epileptic neocortex, as shown previously for human epileptic hippocampus [Eid, T., Thomas, M.J., Spencer, D.D., Rundén-Pran, E., Lai, J.C.K., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., de Lanerolle, N.C., 2004. Loss of glutamine synthetase in the human epileptic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37]. Glutamine synthetase activity was equivalent in both non-epileptic and epileptic human neocortex. Epileptic tissue, however, was characterised by a 37% increase in the density of synaptosomal NMDA receptor sites compared to non-epileptic tissue, as revealed by a radioligand binding assay (B max(non-epileptic) 1.45 pmol/mg protein and B max(epileptic) 1.99 pmol/mg protein, P < 0.05). Our findings shed some doubts on a role of glutamine synthetase in the pathophysiology of epilepsy in the neocortex. However, the detection of a significantly reduced enzymatic activity in the epileptic amygdala supports the assumption that the enzyme defect is localized to the epileptic mesial temporal lobe of corresponding patients.  相似文献   

20.
Several studies have shown that serum- and glucocorticoid-induced protein kinase 1(SGK1) can regulate both glutamate receptors and glutamate transporters and may participate in the regulation of neuroexcitability in neuronal diseases. In our previous study, we analyzed differential gene expression in the anterior temporal neocortex of drug-refractory epilepsy patients relative to control patients using a complementary DNA microarray and found that the SGK1 gene was up-regulated more than twofold in the brain tissues of epileptic patients. In the current study, we measured SGK1 expression in the brain tissues of humans and in an experimental model of rat epilepsy in order to explore the relationship between SGK1 expression and epilepsy. The SGK1 expression was detected in thirty human brain tissues derived from patients undergoing operation for drug-refractory epilepsy and was also detected in eight samples from autopsies. Meanwhile, we investigated SGK1 expression during the epileptic process in rats using immunofluorescence, RT-PCR and western blot analysis. SGK1 expression was enhanced in the temporal neocortex of patients with drug-refractory epilepsy and was also highly expressed in the rat brain during different phases of the epileptic process. SGK1 expression was also related with the elevation of EAAT3, which expression reduced after knockdown SGK1. These results provide new insight into the potential role of SGK1 in the pathophysiology of epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号