首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of catecholestrogens (CE) by rat hepatic microsomes was re-examined because as recently shown; (1) CE formation can be catalyzed by an NADPH-dependent estrogen-4-hydroxylase (E-4-H(NADPH)) and by a peroxidatic, organic hydroperoxide-dependent estrogen-2/4-hydroxylase (E-2/4-H(OHP)), in addition to the established NADPH-dependent estrogen 2-hydroxylase (E-2-H(NADPH)); and (2) the indirect radiometric and the COMT-coupled radioenzymatic assays, used in many previous studies, may fail to provide an accurate measure, in particular, of 4-OH-CE. Using a direct product isolation assay, hepatic microsomes of both male and female rats were shown to express E-2/4-H(OHP) activity with properties similar to those of peroxidatic activity in other tissues. The activities of E-2/4-H(OHP) and E-2-H(NADPH) were affected differently by 5 out of 7 inducers of cytochromes P-450 administered in vivo. Phenobarbital and dexamethasone caused a 4- and 2-3-fold increase in E-2-H(NADPH) activity, respectively, but only a 38 and 20% increase in E-2/4-H(OHP) activity. Ketoconazol and beta-naphtoflavone caused a modest increase in E-2-H(NADPH) activity but a decrease in OHP-dependent activity. Clofibrate decreased peroxidatic activity by 50% and NADPH-dependent activity by approximately 20%. Both activities were increased by ethanol but decreased by isoniazide, an agent which induces the same form of cytochromes P-450 as ethanol. Polyclonal antibody against P-450p, a form of P-450 induced by glucocorticoids, inhibited E-2-H(NADPH) but not E-2/4-H(OHP) activity of untreated and of dexamethasone- and phenobarbital-treated rats. This study establishes that CE formation may occur in liver via the peroxidatic pathway and indicates that this pathway depends on forms of P-450 different from those mediating E-2-H(NADPH) activity. It also confirms and extends previous observations of the involvement of multiple, constitutive and induced forms of cytochrome P-450 in NADPH-dependent 2-hydroxylation in liver.  相似文献   

2.
Cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from pig kidney microsomes. The enzyme fraction contained 7 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 50,500 upon SDS/polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 1,000 times more efficiently, and 25-hydroxylation of 1 alpha-hydroxyvitamin D3 up to 4000 times more efficiently, than the microsomes. The cytochrome P-450 required microsomal NADPH-cytochrome P-450 reductase for catalytic activity. Mitochondrial ferredoxin and ferredoxin reductase could not replace microsomal NADPH-cytochrome P-450 reductase. The enzyme preparation showed no detectable 25-hydroxylase activity towards vitamin D2 or 1 alpha-hydroxylase activity towards 25-hydroxyvitamin D3. CO inhibited the 25-hydroxylation by more than 85%. Mannitol, hydroquinone, catalase and superoxide dismutase did not affect the 25-hydroxylation. The possible role of the kidney microsomal cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

3.
The conversion of [3H]estradiol to 2-hydroxyestradiol (2-OH-E2) by homogenates of porcine ovarian follicles was assayed in vitro in the presence and absence of 10 and 100 microM concentrations of the following potential substrates or inhibitors of estrogen-2/4-hydroxylase (E-2/4-H): (1) estrogens; estrone (E1), estriol (E3) and 17 alpha-estradiol (17 alpha-E2), (2) catecholestrogens; 2-hydroxyestradiol (2-OH-E2), 4-hydroxyestradiol (4-OH-E2) and 2-hydroxyestrone (2-OH-E1); (3) 2-methoxyestradiol (2-MeO-E2); (4) halogenated estrogens; 2-bromoestradiol, (2-Bromo-E2) 4-bromoestradiol and 2,4-dibromoestradiol; (5) androgens; testosterone (T), dihydrotestosterone (DHT) and androstenedione; (6) progesterone; (7) epinephrine; (8) inhibitors of steroid aromatase; aminoglutethimide and 4-hydroxyandrostenedione and (9) SKF 525A, an inhibitor of cytochrome P-450. Progesterone and 2-Bromo-E2 were the two most effective inhibitors (2-OH-E2 formation = 4 and 5% of control at 100 microM and 29.6 and 17.4% at 10 microM of progesterone and 2-Bromo-E2, respectively). 2-MeO-E2 at 100 microM was nearly as effective as progesterone in inhibiting E-2/4-H activity but only caused about 50% inhibition at 10 microM. The three catecholestrogens reduced 2-OH-E2 formation to about the same degree (21-23% of control at 100 microM). The 2,4-dibromo-E2 was equipotent with the catecholestrogens while 4-bromo-E2 was about half as effective. The phenolic estrogens, potential substrates for the enzyme, reduced 2-OH-E2 formation to different degrees, with E3 being the most effective. Among the androgens, DHT was almost as effective an inhibitor as the catecholestrogens, T was about half as effective while androstenedione had no effect. Epinephrine and the two inhibitors of aromatase did not inhibit E-2/4-H activity. SKF 525A inhibited E-2/4-H activity but with a potency only about 1/10th that reported for liver.  相似文献   

4.
The two steps in the side-chain cleavage of C21 steroids to give C19 steroids (i.e. 17 alpha-hydroxylation and C17,20 lyase activity) were examined using a highly purified cytochrome P-450 from microsomes of neonatal pig testis to determine the photochemical action spectra for the two reactions. Photochemical action spectra, using either 4-ene (progesterone) or 5-ene (pregnenolone) substrates, showed maximal reversal of inhibition by CO with light of 451 nm. Evidently the heme of cytochrome P-450 is involved in both 17 alpha-hydroxylation and in C17,20-lyase activity as in the case of the side-chain cleavage of cholesterol. Mechanisms proposed to account for enzymatic cleavage of the alpha-ketol side-chain of C21 steroids (C17,20 lyase activity) must be consistent with these findings.  相似文献   

5.
Cytochrome P-450 was purified from pig testis mitochondria to a specific content of 13.1 n mol/mg of protein. The purified preparation was found to contain a single species of P-450, on sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular weight of about 53000 +/- 2000. The cholesterol side chain-cleavage system could be reconstituted by mixing the purified cytochrome P-450, adrenodoxin reductase, adrenodoxin, cholesterol and NADPH. The rate of conversion of cholesterol to pregnenolone was 6.2 n mol/min/n mol of P-450 under the conditions employed. The absorption spectrum of the oxidized cytochrome P-450 had maxima at 416, 530 and 568 nm. The reduced CO-complex of the cytochrome P-450 exhibited an absorption maximum at 448 nm. The purified P-450 was subjected to microsequence analysis and its NH2-terminal amino acid sequence was found to show considerable homology with that of bovine adrenal P-450 (SCC).  相似文献   

6.
Cholesterol 7 alpha-hydroxylase (cholesterol, NADPH: oxygen oxidoreductase, 7 alpha-hydroxylating, EC 1.14.13.17) was purified from liver microsomes of cholestryramine-fed male rats by using high-performance ion-exchange chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000), and its dithionite-reduced CO complex exhibited an absorption maximum at 450 nm. The specific content of the enzyme was 9 nmol of cytochrome P-450/mg of protein. Upon reconstitution with NADPH-cytochrome P-450 reductase, the enzyme showed a high activity of cholesterol 7 alpha-hydroxylation with the turnover number of 50 min-1 at 37 degrees C. The reaction was inhibited neither by aminoglutethimide nor by metyrapone, but inhibited markedly by iodoacetamide and disulfiram. The reaction was also inhibited significantly by CO. The enzyme catalyzed hydroxylation of cholesterol with strict regio- and stereoselectivity and was inert toward other sterols which are intermediates in the conversion of cholesterol to bile acids, i.e. 7 alpha-hydroxy-4-cholesten-3-one (12 alpha-hydroxylation), 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (25-hydroxylation), and taurodeoxycholate (7 alpha-hydroxylation). Unlike other cytochromes P-450 isolated from rat liver microsomes, the enzyme showed no activity toward testosterone and xenobiotics such as 7-ethoxycoumarin and benzo[a] pyrene. The NH2-terminal amino acid sequence of the enzyme was Met-Phe-Glu-Val(Ile)-Ser-Leu-, which was distinct from those of any other cytochromes P-450 of rat liver microsomes hitherto reported. These results indicate that the enzyme is a novel species of cytochrome P-450 so far not isolated from liver microsomes.  相似文献   

7.
The cytochrome P-450 (P-450sccII) and its reductase, NADPH-cytochrome reductase [EC 1.6.2.4], associated with conversion of progesterone to 4-androstene-3,17-dione, were extensively purified from pig testis microsomes. Higher lyase activity (turnover number of 15 mol of the product formed/min/mol of P-450) could be restored by mixing the P-450sccII, its reductase, pig liver cytochrome b5 and cytochrome b5-reductase [EC 1.6.2.2], and phospholipid in the presence of NADPH, NADH, and O2. Omission of either cytochrome b5 or NADH resulted in a significant loss of the lyase activity indicating actual participation of cytochrome b5 in this P-450-mediated steroidogenic system in the testis.  相似文献   

8.
Rotation of cytochrome P-450 was examined in bovine adrenocortical mitochondria before and after an enzymatic transformation of cholesterol into pregnenolone by cytochrome P-450scc in the presence of malate. Rotational diffusion was measured by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate substrate-dependent intermolecular interactions of cytochrome P-450 with other redox components. Rotational mobility of cytochrome P-450 was significantly dependent on the decrease in cholesterol content by side chain cleavage reaction catalyzed by cytochrome P-450scc. In a typical experiment, the observed value for the normalized time-independent anisotropy r(infinity)/r(0) was decreased from 0.78 in control mitochondria to 0.60 after conversion of 21% of cholesterol to pregnenolone, while no significant change was observed for the average rotational relaxation time phi of about 700 microseconds. Significantly high values of r(infinity)/r(0) = 0.78 and 0.60 imply co-existence of mobile and immobile populations of cytochrome P-450. Since we observed that the heme angle tilted 55 degrees from membrane plane, 22% (control mitochondria) and 40% (after conversion of cholesterol to pregnenolone) of cytochrome P-450 in mitochondria are calculated to be mobile in the preparation. The significant mobilization of cytochrome P-450scc molecules caused by the conversion of cholesterol to pregnenolone is likely due to changes in protein-protein interactions with its redox partners, since the lipid fluidity was kept unchanged by the cholesterol depletion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

10.
Employing reconstitution assays and measurement of cytochrome P-450 content, lanosterol 14 alpha-demethylase and cholesterol 7 alpha-hydroxylase have been studied in solubilized preparations of rat hepatic microsomes. Both activities have been resolved from other cytochrome P-450 isozymes and each other by chromatography on DEAE-Sephacel and adsorption on hydroxylapatite. The demethylase has been further purified to homogeneity by cation exchange chromatography on Mono-S resin. The purified cytochrome displays a specific content of 15.8 nmol of heme/mg of protein and a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent Mr of 51,000. A Soret maximum for the reduced/CO binding complex at 448 nm is observed. Reconstitution of the purified cytochrome with NADPH-cytochrome-c reductase, dilaurylphosphatidylcholine, NADPH, and O2 supports the demethylation process which is inhibited by CO. Reconstitution also affords accumulation of oxygenated, metabolic intermediates with single catalytic turnover of the cytochrome, thus supporting the hypothesis that a single isozyme of cytochrome P-450 is responsible for all three oxidations and the lyase activity involved in the lanosterol C-32 demethylation sequence. Low oxidase activity toward several xenobiotic substrates and selectivity toward endogenous sterol substrates is observed for the purified cytochrome. These results indicate a high degree of substrate specificity for the cytochrome, which would be expected for a constitutive P-450 involved in anabolic biochemical processes.  相似文献   

11.
The cytochrome P-450 enzyme which catalyses 25-hydroxylation of vitamin D3 (cytochrome P-450(25] from pig kidney microsomes [Postlind & Wikvall (1988) Biochem. J. 253, 549-552] has been further purified. The specific content of cytochrome P-450 was 15.0 nmol.mg of protein-1, and the protein showed a single spot with an apparent isoelectric point of 7.4 and an Mr of 50,500 upon two-dimensional isoelectric-focusing/SDS/PAGE. The 25-hydroxylase activity towards vitamin D3 was 124 pmol.min-1.nmol of cytochrome P-450-1 and towards 1 alpha-hydroxyvitamin D3 it was 1375 pmol.min-1.nmol-1. The preparation also catalysed the 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol at a rate of 1000 pmol.min-1.nmol of cytochrome P-450-1 and omega-1 hydroxylation of lauric acid at a rate of 200 pmol.min-1.nmol of cytochrome P-450-1. A monoclonal antibody raised against the 25-hydroxylating cytochrome P-450, designated mAb 25E5, was prepared. After coupling to Sepharose, the antibody was able to bind to cytochrome P-450(25) from kidney as well as from pig liver microsomes, and to immunoprecipitate the activity for 25-hydroxylation of vitamin D3 and 5 beta-cholestane-3 alpha,7 alpha-diol when assayed in a reconstituted system. The hydroxylase activity towards lauric acid was not inhibited by the antibody. By SDS/PAGE and immunoblotting with mAb 25E5, cytochrome P-450(25) was detected in both pig kidney and pig liver microsomes. These results indicate a similar or the same species of cytochrome P-450 in pig kidney and liver microsomes catalysing 25-hydroxylation of vitamin D3 and C27 steroids. The N-terminal amino acid sequence of the purified cytochrome P-450(25) from pig kidney microsomes differed from those of hitherto isolated mammalian cytochromes P-450.  相似文献   

12.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

13.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1986,25(12):3563-3569
The effects of cholesterol and adrenodoxin binding on resonance Raman spectra of cytochrome P-450scc in both oxidized and CO-reduced states were examined. Upon cholesterol binding, oxidized cytochrome P-450scc showed a significant shift of spin equilibrium from low-spin to high-spin state. Addition of adrenodoxin caused a complete conversion of cholesterol-bound oxidized cytochrome P-450scc to a pure high-spin state that was considered to be in the hexacoordinated state judged by the v10 mode at 1620 cm-1 and v3 mode around 1485 cm-1. Cholesterol in substrate binding site may oppose a linear and perpendicular binding of carbon monoxide to the reduced heme iron, leading to the distorted Fe-C-O linkage. This is based on the following observations: (1) an increase of the Fe-CO stretching frequency to 483 from 477 cm-1 upon addition of cholesterol; (2) an enhanced photodissociability of bound carbon monoxide of CO complex of cytochrome P-450scc in the presence of cholesterol. As another aspect of the effect of cholesterol on the CO complex form of cytochrome P-450scc, the enhanced stability of the native form ("P-450" form) was observed. There was no additional effect of reduced adrenodoxin on the Raman spectra of the CO-reduced form of cytochrome P-450scc.  相似文献   

14.
A reconstituted system from rat liver microsomes, consisting of partially purified fractions of cytochrome P-450 and NADPH-cytochrome P-450 reductase was shown to catalyze 7α-hydroxylation of cholesterol in the presence of NADPH and a synthetic phosphatidylcholine. The rate of 7α-hydroxylation of added [4-14C] cholesterol was linear with the concentration of cytochrome P-450 and increased with the concentration of NADPH-cytochrome P-450 reductase up to a certain level and then remained constant. Omission of phosphatidylcholine resulted only in a 20% decrease in cholesterol 7α-hydroxylase activity of the system. The rate of 7α-hydroxylation was 2–3 times higher in reconstituted systems with cytochrome P-450 from cholestyramine-treated rats than in those with cytochrome P-450 from untreated rats.  相似文献   

15.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

16.
The role of cytochrome P-450 in cholesterol biogenesis and catabolism   总被引:3,自引:3,他引:0  
1. Adjuvant-induced arthritis in rats is accompanied by a loss of activity of the drug-metabolizing enzyme system and a decrease in hepatic cytochrome P-450. 2. Arthritic rats have normal serum and liver cholesterol concentrations. 3. The rate of biogenesis of cholesterol in vivo and in vitro from either [(14)C]acetate or [(14)C]mevalonate in arthritic rats was the same as or greater than that found in control rats. 4. Treatment of rats with carbon disulphide (1ml/kg) resulted in a loss of drug-metabolizing-enzyme activity and increased cholesterol biogenesis. 5. The activity of cholesterol 7alpha-hydroxylase in adjuvant-induced arthritic rats did not differ significantly from that in control rats. 6. Rats fed with cholestyramine had an elevated hepatic cholesterol 7alpha-hydroxylase activity, but neither the concentration of cytochrome P-450 nor the activity of the drug-hydroxylating enzyme, aminopyrine demethylase, was affected. 7. The relationships between drug hydroxylation and cholesterol metabolism are discussed.  相似文献   

17.
1. ADH activity of Euglena grown with 50 mM ethanol decreased, but MEOS activity increased with a corresponding increase in the total amount of cytochrome P-450. 2. Phenobarbital treatment increased the total amount of cytochrome P-450. 3. CO and KCN, cytochrome P-450 ligands, diminished acetaldehyde formed from ethanol oxidation by MEOS. 4. The amounts of NAD(P)H cytochrome c reductases and cytochrome b5 type, components of microsomal monooxygenase reaction, have been spectrophotometrically measured. 5. NAD(P)H cytochrome c reductases activities were induced by phenobarbital. 6. DMSO, an inhibitor of rabbit MEOS, inhibited O2 consumption (11-20%) by Euglena grown with an ethanol, but not a lactate medium. 7. These studies indicate the presence of cytochrome P-450-dependent MEOS in Euglena similar to that in the mammalian hepatic cell.  相似文献   

18.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

19.
Formation of androstadienone or androstadienol, a delta 16-C19-steroid, from progesterone or pregnenolone is catalyzed by the so-called delta 16-C19-steroid synthesizing enzyme in the pig testicular microsomes. The enzyme activity was also present in the testicular microsomes prepared from neonatal pig. The enzyme activity was considerably inhibited by CO, and such cytochrome P-450 inhibitors as SU 8000, SU 10603, and metyrapone. delta 16-C19-Steroid synthesizing enzyme activity was extracted from the testicular microsomes by sodium cholate in potassium phosphate buffer, pH 7.4, containing EDTA and dithiothreitol, and the solubilized enzyme activity was partially purified by DEAE-cellulose column chromatography. It was shown by reconstitution of the enzyme activity that delta 16-C19-steroid synthesizing enzyme is a cytochrome P-450-linked oxygenase system dependent on cytochrome P-450-reductase and cytochrome b5. In particular, cytochrome b5 was an essential component for the activity of delta 16-C19-steroid synthesizing enzyme.  相似文献   

20.
The effects of various antimycotic reagents and some other reagents on a cytochrome P-450-linked monooxygenase system were investigated with respect to the activities of NADPH-ferricyanide reductase. NADPH-cytochrome c reductase of NADPH-adreno-ferredoxin reductase from NADPH to cytochrome c via adreno-ferredoxin, NADPH-cytochrome P-450-phenylisocyanide complex reductase, and the cholesterol side chain cleavage of the cytochrome P-450scc-linked monooxygenase system. No reagents inhibited the NADPH-ferricyanide reductase activity. Only cloconazole inhibited about 50% of NADPH-cytochrome c reductase activity. Cloconazole, econazole, clotrimazole, etomidate and ketoconazole inhibited both NADPH-cytochrome P-450-phenylisocyanide complex reductase and the side chain cleavage activity of cholesterol of the cytochrome P-450scc-linked monooxygenase system. Cloconazole, econazole, etomidate and ketoconazole behaved like non-competitive inhibitors for NADPH-cytochrome P-450-phenylisocyanide reductase activities and their Ki values were 10(-4)-10(-6) M. Cloconazole was a non-competitive inhibitor of NADPH-cytochrome c reductase and its Ki value was 8.3 x 10(-4) M. Cloconazole, clotrimazole, econazole, etomidate, ketoconazole and mitotane completely inhibited the side chain cleavage activity of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号