首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using biospecific chromatography on polylysocephamide, a toxic phospholipase possessing a presynaptic effect on neuromuscular preparations was isolated from the venom of the giant hornet Vespa orientalis. The enzyme was shown to possess a high hydrolytic activity towards 1-acyllysophosphatidylcholine within a narrow pH range (pH optimum 7.5). The enzyme activity was suppressed by detergents of various chemical composition. Lysophospholipase caused an intensive hemolysis of washed human erythrocytes. The catalytic and hemolytic functions of the enzyme were sensitive to metal ions, however, in a different degree. Ca2+ and Mn2+ activated, while Cu2+ and Zn2+ inhibited the enzyme. Mg2+ and Sr2+ had no effect on the enzyme activity.  相似文献   

2.
The sensitivity of the membrane-bound hydrogenase of Bradyrhizobium japonicum to inactivation by proteases and membrane-impermeant protein modification reagents was compared under hydrogen versus oxygen. In membrane vesicles, the half-life of enzyme inactivation by trypsin of the H2-reduced enzyme was approximately 10 min, whereas O2-oxidized enzyme was much less sensitive to trypsin inactivation (half-life of over 90 min). Diazobenzene sulfonate (DABS) affected the enzyme activity in a manner similar to proteases. With DABS, the enzyme had a half-life of 2-3 min under H2 versus over 30 min under O2. Experiments in which the gas phase (containing either H2 or O2) available to the membranes was changed prior to the protease or chemical modification treatments indicated that it is the redox state of the enzyme at the time of the treatment which determines the sensitivity of the enzyme to inactivation. The redox-dependent differences in the behavior of the membrane-bound enzyme were attributed to changes in the accessibility of the small (33 kDa) subunit. The kinetics of enzyme inactivation by trypsin, under H2, correlated very well with the degradation of the intact 33-kDa subunit, whereas the large subunit (65 kDa) was rather resistant to proteolytic degradation. DABS treatment was found to decrease the reactivity of the small subunit to its antibody concomitant with enzyme inactivation under H2, but without such an effect on the O2-oxidized enzyme. In contrast to the results with the membrane-bound enzyme, purified dehydrogenase was found to be equally susceptible to inactivation by proteolysis or chemical modification irrespective of whether the treatments were performed under H2 or O2. These results indicate that, in the membrane, hydrogenase undergoes a redox-linked conformational change, whereby the small subunit of the enzyme becomes more accessible to external reagents when the enzyme is in its reduced form.  相似文献   

3.
O2-inactivation of pyruvate:NADP+ oxidoreductase from mitochondria of Euglena gracilis was studied in vitro, and a mechanism which consists of two sequential stages was proposed. Initially, the enzyme is inactivated by the direct action of O2 in a process obeying second-order kinetics. Although the catalytic activity for pyruvate oxidation is lost by this initial inactivation, NADPH oxidation with artificial electron acceptors still occurs. Subsequently, a secondary, O2-independent inactivation occurs, rendering the enzyme completely inactive. Pyruvate stimulates the O2-inactivation while CoA and NADP+ protect the enzyme from O2. The O2-inactivation is accelerated by reduction of the enzyme with pyruvate and CoA. Reactivation of the O2-inactivated enzyme was studied in Ar by incubation with Fe2+ in the presence of some other reducing reagent such as dithiothreitol. The evidence obtained indicates that the partially inactivated enzyme, which retains catalytic activity for NADPH oxidation, can be reactivated, but the completely inactivated enzyme is not. When Euglena cells were exposed to 100% O2 the enzyme in the cells was inactivated by O2, but the rate was quite slow compared with that observed in vitro. The enzyme inactivated by O2 in the cells was almost completely reactivated in vitro by incubation with Fe2+ and other reducing reagents in Ar, suggesting that the secondary, O2-independent inactivation does not occur in situ. When the cells were returned to air, reactivation of the O2-inactivated enzyme in the cells began immediately. The enzyme, kept in isolated, intact mitochondria, was stable in air; however, the enzyme was inactivated by O2 when the mitochondria were incubated with a high concentration of pyruvate.  相似文献   

4.
S R Gavva  B G Harris  P M Weiss  P F Cook 《Biochemistry》1991,30(23):5764-5769
A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in KNAD and Ki metal and decreases in Vmax as the metal size increases from Mg2+ to Mn2+ to Cd2+, indicative of crowding in the site. The Kmalate value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/Kmalate increase with all three metal ions compared to the native enzyme concomitant with a decrease in the 13C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The 13C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary 13C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd2+. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd2+ as the divalent metal activator. Upon inactivation, only Cd2+ ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd2+.  相似文献   

5.
Experiments were conducted to study the differences in catalytic behavior of various forms of Escherichia coli glutamine synthetase. The enzyme catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia via a gamma-glutamyl phosphate intermediate. The physiologically important metal ion for catalysis is Mg2+; however, Mn2+ supports in vitro activity, though at a reduced level. Additionally, the enzyme is regulated by a covalent adenylylation modification, and the metal ion specificity of the reaction depends on the adenylylation state of the enzyme. The kinetic investigations reported herein demonstrate differences in binding and catalytic behavior of the various forms of glutamine synthetase. Rapid quench kinetic experiments on the unadenylylated enzyme with either Mg2+ or Mn2+ as the activating metal revealed that product release is the rate-limiting step. However, in the case of the adenylylated enzyme, phosphoryl transfer is the rate-limiting step. The internal equilibrium constant for phosphoryl transfer is 2 and 5 for the unadenylylated enzyme with Mg2+ or Mn2+, respectively. For the Mn2(+)-activated adenylylated enzyme the internal equilibrium constant is 0.1, indicating that phosphoryl transfer is less energetically favorable for this form of the enzyme. The factors that make the unadenylylated enzyme most active with Mg2+ are discussed.  相似文献   

6.
Summary The requirements for activity of blue-green algal nitrogenase have been studied. The optimal concentration ranges for ATP and Na2S2O4 are 2-3 mM and 4-10 mM respectively. A magnesium requirement has been confirmed but the enzyme is not specific for Mg2+, Co2+ and Mn2+ will also support activity but Ca2+, Cu2+ and Zn2+ will not. The partially purified enzyme is soluble and specific activities of 50–100 nmoles C2H4/mg protein/min have been obtained. The biochemical characteristics of the enzyme, as determined in studies using enzyme inhibitors, are similar to those of bacterial and legume nitrogenases in that the enzyme is a metallo-protein containing iron and reduced thiol groups and the redox capacity of the enzyme involves a possible valency change in the iron. The transfer of electrons from H2 via a bacterial hydrogenase has been shown to be mediated, at least in part, by ferredoxin. The role of ferredoxin and the interrelationships between photosynthesis, reductant pool and hydrogen metabolism are discussed in the light of recent results obtained by ourselves and other workers.  相似文献   

7.
Amylase of the thermophilic actinomycete Thermomonospora vulgaris.   总被引:2,自引:0,他引:2  
alpha-Amylase of the thermophilic actinomycete Thermomonospora vulgaris was partially purified. Maximal enzyme activity was obtained at 60degreeC and pH 6.0. KM value was l.4%. The effect of some metal salts on enzyme activity was studied. Enzyme activity was inhibited by by KCN, EDTA, and iodoacetate. Inhibition by EDTA was completely nullified by CaCl2, but the inhibition by iodoacetate was not overcome by 2-mercaptoethanol. Exposure of the enzyme to pH 7.0 and 9.0 for 2 hr. did not affect the enzyme, but exposure to pH 3.0 for few minutes completely inactivated the enzyme. Exposure of the enzyme to 60degreeC resulted in an appreciable inactivation and exposure to 80degreeC completely inactivated the enzyme. Addition of CaCl2, 2-mercaptoethanol, or enzyme substrate the 60degreeC exposed enzyme. However, bovine serym albumin had a protective effect when the enzyme was exposed to 60degreeC but not to 80degreeC. The enzyme was stable in the presence of 8 M urea.  相似文献   

8.
The enzyme system responsible for the conversion of 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihyd roptridine triphosphate (dihydroneopterin triphosphate or H2-NTP) to 2-amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimido[4,5-b]-[1,4]diazepine (pyrimidodiazepine or PDA), a precursor to the red eye pigments, he drosopterins, has been purified from the heads of Drosophila melanogaster. The PDA-synthesizing system consists of two components, a heat-stable enzyme and a heat-labile enzyme. The heat-stable enzyme can be replaced by sepiapterin synthase A, a previously purified enzyme required for the Mg2+-dependent conversion of H2-NTP to an unstable compound that appears to be 6-pyruvoyltetrahydropterin (pyruvoyl-H4-pterin). The heat-labile enzyme, purified to near-homogeneity and termed PDA synthase (Mr = 48,000), catalyzes the conversion of pyruvoyl-H4-pterin to PDA in a reaction requiring the presence of reduced glutathione. Because PDA is two electrons more reduced than pyruvoyl-H4-pterin, the reducing power required for this transformation is probably supplied by glutathione. The PDA-synthesizing system requires the presence of another thiol-containing compound such as 2-mercaptoethanol when incubation conditions 2-mercaptoethanol is no longer required. Evidence is presented to indicate that the Drosophila eye color mutant, sepia, is missing PDA synthase.  相似文献   

9.
Carthamin, a red quinochalcone pigment in safflower (Carthamus tinctorius L.), is enzymatically converted from a yellow precursor, precarthamin. The enzyme, which catalyzes the oxidative decarboxylation of precarthamin to carthamin, was purified to apparent homogeneity from yellow petals of safflower and named precarthamin decarboxylase. The molecular mass of the denatured enzyme was estimated as 33 kDa by SDS-PAGE. The molecular mass of the native enzyme was determined by gel filtration chromatography to be 24 kDa; thus, the native enzyme is a monomer. The optimum pH of the enzyme was 5.0. The enzyme activity was inhibited by Mn2+, Fe2+, and Cu2+ and sharply decreased at temperatures higher than 50 degrees C for 10 min. The activation energy and the Arrhenius frequency factor of the enzyme reaction were 19.7 kcal mol(-1) and 9.94 x 10(11) s(-1), respectively. The saturation curve of precarthamin showed that the enzyme follows Michaelis-Menten kinetics. The Km and Vmax of the enzyme were calculated as 164 microM and 29.2 nmol/ min, respectively. The turnover number (kcat) of the enzyme was calculated as 1.42 x 10(2) s(-1). The enzyme activity was severely inhibited by reducing agents such as glutathione and DTT at pH 5.0, suggesting that a disulfide bond may play an important role in enzyme function.  相似文献   

10.
Calmodulin-dependent guanylate cyclase from Tetrahymena plasma membranes was solubilized in about a 22% yield by using digitonin in the presence of 0.2 mM CaCl2 and 20% glycerol. The detergent, when present in the assay at concentrations above 0.05%, diminished the basal and calmodulin-stimulated activity of the enzyme. Guanylate cyclase solubilized with digitonin was eluted from DEAE-cellulose with 200 mM KCl in a yield of 50%. Properties of the solubilized enzyme were similar to those of the native membrane-bound enzyme. The Kms for Mg-GTP and Mn-GTP were 140 and 30 microM, respectively. The enzyme required Mn2+ for maximum activity, the relative activity in the presence of Mg2+ being 30% of the activity with Mn2+. The solubilized enzyme retained the ability to be activated by calmodulin, with its extent being reduced as compared to the membrane-bound enzyme. The presence of a Ca2+-dependent calmodulin-binding site on the solubilized enzyme was shown by the Ca2+-dependent retention of the enzyme on a calmodulin-Sepharose-4B column.  相似文献   

11.
12.
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.  相似文献   

13.
The beta-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate: NAD+ oxidoreductase, EC 1.1.1.85) gene from Baccilus coagulans was cloned and expressed in Escherichia coli C600, using pBR322 as a vector plasmid. The B. coagulans enzyme was purified to a homogeneous state from the E. coli carrying a pBR322 - the B. coaglulans enzyme gene hybrid plasmid. The enzyme consists of two subunits of equal molecular weight (4.4 X 10(4) ). The enzyme activity was stimulated by 0.5 mM Mn2+, Mg2+ and Co2+. The enzyme was strongly inhibited by 0.2 mM p-chloromercuribenzoate and the inhibition was completely recovered by 1 mM dithiothreitol. The B. coagulans enzyme was thermostabilized by 1.5 M NaCl. The B. coagulans enzyme is a composite of alpha-helix, beta-sheet and remainder. The secondary structure of the enzyme was appreciably altered by 0.5 mM MgCl2 and 1.5 M NaCl.  相似文献   

14.
Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.  相似文献   

15.
R Lahti  M Jokinen 《Biochemistry》1985,24(14):3526-3530
Kinetic studies of the less active form of Streptococcus faecalis inorganic pyrophosphatase (EC 3.6.1.1), together with computational analysis, indicated that cooperativity in ligand binding contributes in a significant way to the behavior of this enzyme. The simplest model applicable to our data was a Monod-Wyman-Changeux-type, allosteric model, in which the enzyme is proposed to exist in two states, referred to as R and T states, respectively. In the absence of ligands, 94% of the enzyme was in the T state. MgPPi2- was the only substrate for the enzyme in the R form. This substrate was bound equally well by both enzyme forms, but it was hydrolyzed 5 times more efficiently by the R form than it was by the T form. Mg2PPi was bound exclusively to the T state of the enzyme, and it was hydrolyzed 25% as rapidly as MgPPi2- by the T form. Mg2PPi inhibited the hydrolysis of the more efficient substrate, MgPPi2-, by competing with MgPPi2- for the enzyme in the T form and by shifting the R----T equilibrium in favor of the T form. Mg2+ stabilized the R state, thus activating the hydrolysis of MgPPi2- and inhibiting that of Mg2PPi.  相似文献   

16.
1. The kinetics of the reaction catalysed by fructose bisphosphatase have been studied at pH 7.2 and at pH 9.5. The activity of the enzyme was shown to respond sigmoidally to increasing concentrations of free Mg2+ or Mn2+ ions at pH 7.2, whereas the dependence was hyperbolic at pH 9.5. At both pH values the enzyme responded hyperbolically to increasing concentrations of fructose 1,6-bisphosphate, although inhibition was observed at higher concentrations of this substrate. This high substrate inhibition was shown to be partial in nature and the enzyme was found to be more sensitive at pH 7.2 than at pH 9.5. 2. The properties of the enzyme, are consistent with the enzyme obeying either a random-order equilibrium mechanism or a compulsory-order steady-state mechanism in which fructose bisphosphate binds to the enzyme before the cation. 3. Reaction of the enzyme with a four-fold molar excess of p-chloromercuribenzoate caused activation of the enzyme when its activity was assayed in the presence of MN2+ ions but inhibition when Mg2+ ions were used. Higher concentrations of p-chloromercuribenzoate caused inhibition. This activation at low p-chloromercuribenzoate concentrations, and the reaction of 5,5'-dithio-bis(2-nitrobenzoate) with the four thiol groups in the enzyme that reacted rapidly with this reagent, were prevented or slowed by the presence of inhibitory, but not non-inhibitory, concentrations of fructose bisphosphate. After reaction with a four-fold molar excess of p-chloromercuribenzoate the enzyme was no longer sensitive to high substrate inhibition by fructose bisphosphate.  相似文献   

17.
The non-specific phosphomonoesterase (enzyme I) extracted from the larva of the codworm (Phocanema decipiens) is different from the enzyme (enzyme II) from the muscle of its host, the codfish (Gadus morhua). The pH optima were 4.0 and 4.5, and the KM values for p-nitrophenyl phosphate hydrolysis were 1.8 mM and 6.5 mM for enzymes I and II respectively. The specific specific activity in units (0.01 mumol/min) per mg protein was 4.80 +/- 0.85 and 0.54 +/- 0.07 for enzymes I and II respectively. The specific activity from uninfected muscles was only 0.39 (SD +/- 0.017) units per mg of protein. Both enzymes were inhibited by NaF, HgCl2, and cysteine but were stimulated by 2-mercaptoethanol. EDTA and iodoacetamide had no effect on enzyme I but enzyme II was activated by EDTA and inhibited by iodoacetamide. Cadmium ions inhibited both the enzymes but a conspicuous feature with enzyme II was in the increase in percentage inhibition by lowering the concentration of CD2+.  相似文献   

18.
The hydantoin racemase gene of Pseudomonas sp. strain NS671 had been cloned and expressed in Escherichia coli. Hydantoin racemase was purified from the cell extract of the E. coli strain by phenyl-Sepharose, DEAE-Sephacel, and Sephadex G-200 chromatographies. The purified enzyme had an apparent molecular mass of 32 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By gel filtration, a molecular mass of about 190 kDa was found, suggesting that the native enzyme is a hexamer. The optimal conditions for hydantoin racemase activity were pH 9.5 and a temperature of 45 degrees C. The enzyme activity was slightly stimulated by the addition of not only Mn2+ or Co2+ but also metal-chelating agents, indicating that the enzyme is not a metalloenzyme. On the other hand, Cu2+ and Zn2+ strongly inhibited the enzyme activity. Kinetic studies showed substrate inhibition, and the Vmax values for D- and L-5-(2-methylthioethyl)hydantoin were 35.2 and 79.0 mumol/min/mg of protein, respectively. The purified enzyme did not racemize 5-isopropylhydantoin, whereas the cells of E. coli expressing the enzyme are capable of racemizing it. After incubation of the purified enzyme with 5-isopropylhydantoin, the enzyme no longer showed 5-(2-methylthioethyl)hydantoin-racemizing activity. However, in the presence of 5-(2-methylthioethyl)hydantoin, the purified enzyme racemized 5-isopropylhydantoin completely, suggesting that 5-(2-methylthioethyl)hydantoin protects the enzyme from inactivation by 5-isopropylhydratoin. Thus, we examined the protective effect of various compounds and found that divalent-sulfur-containing compounds (R-S-R' and R-SH) have this protective effect.  相似文献   

19.
An increase in pH shifts the equilibrium between the K+-form and the Na+-form of the (Na+ + K+)-ATPase towards the Na+-form. pK for the proton effect on the equilibrium is decreased by modification of the enzyme with pyridoxal 5-phosphate. The reactivity of the enzyme towards pyridoxal 5-phosphate is increased by an increase in pH. Modification by pyridoxal 5-phosphate of epsilon-amino groups on lysine, which has a pK of about 8 with the enzyme in the K+-form and of about 7.4 in the Na+-form, shifts the equilibrium between E1Na+ and E2 towards E2, and the equilibrium between E2(K+occ) and E2 towards E2, but has no effect on the overall equilibrium between E1Na+ and E2(K+occ). An additional modification of epsilon-amino groups on lysine, which has a pK of 9.5-10 with the enzyme in the K+-form and of about 7.7 with the enzyme in the Na+-form, shifts the equilibrium between E2(K+occ) and E1Na+ towards E1Na+; this is due to a shift in the equilibrium between E2(K+occ) and E2 towards E2, but with no effect on the equilibrium between E1Na+ and E2. The results show that the transition from the K+-form to the Na+-form decreases the pK of lysine epsilon-amino groups on the enzyme, and that the protonation of these groups influences the equilibrium between the two conformations.  相似文献   

20.
The optical absorption spectrum of bovine liver catalase was found to change on light irradiation in the presence of proflavin and EDTA in a deaerated solution. Upon addition of CO to the photolyzed product, the spectrum changed to an another form, suggesting that the photolyzed product is the ferrous form of the enzyme and CO is bound to the ferrous enzyme. When O2 was introduced into the ferrous enzyme, the absorption spectrum returned to its original ferric state. An intermediate spectrum was obtained in this reaction at -20 degrees C in 33% v/v ethylene glycol. Judged from the spectral characteristics of this compound, it is probably an oxyferrous enzyme. It was converted into ferric enzyme gradually when the sample was left at room temperature. The ferrous enzyme, which was generated by flash photolysis of the CO complex of the enzyme in an air-saturated buffer, reacted with O2 to form the oxyferrous enzyme with a second order rate constant of 9.2 x 10(3) M-1.s-1 at pH 8.6 and 20 degrees C. The oxyferrous enzyme thus obtained autodecomposed into the ferric form with a rate constant of 0.1 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号