首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the batch extraction of lactic acid using an emulsion liquid membrane system are reported. The membrane phase consists of the tertiary amine carrier Alamine 336 and the surfactant Span 80 dissolved in n-heptane/paraffin and aqueous solutions of sodium carbonate in the internal phase. The effects of internal phase reagent, extraction temperature, and initial external phase pH on the extraction efficiency and the emulsion swelling are examined. A statistical factorial experiment on extraction from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the extraction system from a broth. The extraction efficiency from the fermentation broth is found to be lower as compared to aqueous solutions of pure lactic acid. The effect of pH and the presence of other ionic species on selectivity are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
For effective microbial lactic acid production using Lactobacillus delbrueckii, two-stage extractive fermentation was examined. Extractants were screened from the viewpoints of a high distribution coefficient for lactic acid and less toxicity toward the microorganism. Even if the extractant showed some toxicity toward the microorganism, it was found that a reduction of toxicity was possible by back-extraction using oleyl alcohol. As a result, 40% Alamine 336 diluted with oleyl alcohol, and oleyl alcohol, were selected as the extractant and the back-extractant, respectively. After two-stage extraction by these extractants, the growth rate was improved by the removal of lactic acid. This method was then applied to continuous extractive fermentation using a jar-fermentor. During 4-h extraction, lactic acid accumulation in the broth was significantly suppressed, while the cell growth and glucose consumption rates were also found not to be reduced. After 24 h, the cell concentration attained an OD660 of 14, which corresponded to a level 1.25 times higher than that of the control culture without extraction. Total lactic acid productivity was 1.4 times level compared with the control culture.  相似文献   

3.
以L-乳酸发酵液为对象,以正丁醇为萃取剂,在pH为2、温度为25℃、n(乳酸):n(正丁醇)=1:1、乳酸在发酵液中的质量分数为30%时,经3次萃取后,最终的萃取率可达到75.7%。萃取完成后,不需要将乳酸进行反萃,可将所得到的正丁醇-乳酸的混合体系作为底物进行酯化反应,生成乳酸丁酯,从而避开提取纯乳酸的高操作要求。  相似文献   

4.
Lactic acid fermentation is an end product inhibited reaction. In situ separation of lactic acid from fermentation broth using ion exchange resins was investigated and compared with conventional fermentation system. Amberlite resin (IRA-400, Cl) was used to separate lactic acid from fermentation broth and pH was controlled online with an automatic pH controller. The effect of process variables on lactic acid production by Lactobacillus casei in whey permeate was studied. The maximum productivity was obtained at pH = 6.1, T = 37 °C and impeller speed = 200 rpm. The maximum concentration of lactic acid at optimum condition was found to be 37.4 g/L after 38 h of fermentation using in situ separation system. The productivity of in situ separation system was five times increased in comparison with conventional system.  相似文献   

5.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

6.
An anion exchange method for lactic acid recovered from lactic acid-glucose solution in an ion-exchange membrane-based extractive fermentation system was examined. The exchange isotherms of anion exchange resins for lactic acid recovered were measured batchwise, and the exchange-desorption kinetics of lactic acid passing through the exchange column was investigated. The determined typical breakthrough and elution curves were measured and simulated by conventional mode. The mass transfer coefficients were identified by numberical method. The effects of the velocity of the fluid on the dynamics were studied. Aqueous NaOH solution was found to be the best solvent for elution. An experiment on anioun exchange from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the ion exchange system from a borth. The ion-exchange mass-transfer coefficient and efficiency from the fermentation broth is found to be lower when compared with aqueous solutions of pure lactic acid. The results show that the separation method with anion exchange resins may be used in the production of lactic acid by fermentation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
三相流化床中固定化米根霉萃取发酵生产L-乳酸   总被引:1,自引:0,他引:1  
以TRPO/磺化煤油为萃取剂,在2L三相流床反应器中进行了固定化米根霉原位萃取和异位萃取发酵生产L-乳酸的实验,结果表明,发酵液中的pH值能被控制在3.5左右.产酸速率高达每小时.每1L固定化颗粒产生11gL-乳酸。提出了一个数学模型用以描述萃取发酵中L-乳酸的积累及在各相的分配情况。模型计算曲线与实验值符合良好。  相似文献   

8.
Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses and to become an important feedstock for the chemical industry. In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production processes. In this context, high molecular weight amines are known to be effective extractants for organic acids. For this reason, as a first step of isolation and purification, the reactive extraction of succinic acid was studied by mixing aqueous succinic acid solutions with 448 different amine–solvent mixtures as extraction agents (mixer-settler studies). The extraction agents consist either of one amine and one solvent (208 reactive extraction systems) or two amines and two solvents (240 reactive extraction systems). Maximum extraction yields of succinic acid from an aqueous solution with 423 mM succinic acid at pH 2.0 were obtained with more than 95% yield with trihexylamine solved in 1-octanol or with dihexylamine and diisooctylamine solved in 1-octanol and 1-hexanol. Applying these optimized reactive extraction systems with Escherichia coli fermentation broth resulted in extraction yields of 78–85% due to the increased ionic strength of the fermentation supernatant and the co-extraction of other organic acids (e.g., lactic acid and acetic acid), which represent typical fermentation byproducts.  相似文献   

9.
The sequential production of bioethanol and lactic acid from starch materials and lignocellulosic materials was investigated as ethanol fermentation broth (EFB) can provide nutrients for lactic acid bacteria. A complete process was developed, and all major operations are discussed, including ethanol fermentation, broth treatment, lactic acid fermentation, and product separation. The effect of process parameters, including ethanol fermentation conditions, treatment methods, and the amount of EFB used in simultaneous saccharification and fermentation (SSF), is investigated. Under the selected process conditions, the integrated process without additional chemical consumption provides a 1.08 acid/alcohol ratio (the broth containing 22.4 g/L ethanol and 47.6 g/L lactic acid), which corresponds to a polysaccharide utilization ratio of 86.9 %. Starch ethanol can thus promote cellulosic lactic acid by providing important nutrients for lactic acid bacteria, and in turn, cellulosic lactic acid could promote starch ethanol by improving the profit of the ethanol production process. Two process alternatives for the integration of starch ethanol and cellulosic lactic acid are compared, and some suggestions are given regarding the reuse of yeast following the cellulosic SSF step for lactic acid production.  相似文献   

10.
盐析萃取生物基化学品的研究进展   总被引:1,自引:0,他引:1  
廉价生物质的生物炼制研究主要集中在菌种和发酵方面,对下游分离研究较少。廉价生物质资源的利用导致发酵液中引入更多杂质,成分较单糖发酵更复杂,致使生物基化学品的下游分离过程成为其工业化生产亟需解决的关键问题。文中介绍了一种基于两相分配差异分离亲水性生物基化学品的盐析萃取技术及其在生物基化学品分离方面的应用,重点阐述了短链醇和盐对双水相形成的影响,并对1,3-丙二醇、2,3-丁二醇、乙偶姻、乳酸等的盐析萃取研究进展进行了总结和展望。盐析萃取技术可有效地回收发酵液中的小分子亲水性产品,同时除去大多数的杂质 (细胞和蛋白质等),在生物基化学品的分离过程中将是一种有前景的分离技术。  相似文献   

11.
A simple gas-liquid chromatographic procedure for analyzing ethanol, acetic acid, acetoin, and racemic and meso-2,3-butylene glycol in broth media is described. Overnight broth cultures were filtered or centrifuged, and the filtrate or supernatant was treated with formic acid to aid separation of volatile fatty acids. Samples were then directly analyzed by gas-liquid chromatography on a 20% Tween 80-Chromosorb W-AW column and propionic acid as an internal standard. A complete analysis took ca. 8 min. The method can be used to distinguish homofermentative from heterofermentative lactic acid bacteria based on the level of ethanol produced and citrate-utilizing from non-citrate-utilizing lactic acid bacteria based on the levels of acetic acid produced. The method also has potential in distinguishing other bacterial fermentations. Of the 13 species of lactic acid bacteria tested, Streptococcus lactis subsp. diacetylactis was the major producer of 2,3-butylene glycol (total range, 0.3 to 3.5 mM), and, except for strain DRC1, both the racemic and meso isomers were produced in approximately equal amounts.  相似文献   

12.
Summary A novel method of lactic acid fermentation byLactobacillus casei immobilized in Ca—alginate gels is described, in which an ion—exchange resin packed column is attached to a fermentor for separation of lactic acid from fermentative broth. The technique successfully alleviated the restriction imposed by lactic acid on bacterial growth and product formation. As compared to the conventional batch fermentation, the new fermentation technique enhanced the lactic acid productivity and sugar conversion rate from 0.328g/L·h and 88. 2% to 0.482g/L·h and 98.6%, respectively.  相似文献   

13.
The aim of this work was to recover lactic acid in undissociated form from grass silage juice. For this aim, chromatographic separation using neutral polymeric resin Amberlite XAD1600 was investigated. Up to now, there is no hint in the literatures about using neutral polymeric resin for lactic acid separation from a mixture. Important factors (flow-rate, concentration of feed and loaded volume) that affect separation performance were firstly investigated with model solutions. The obtained results showed that lactic acid solutions with the purity varying from 93.2% to 99.9% could be obtained at the recovery yields over 99.4%. After that, trials with silage juice were carried out. Due to the complex composition of the feed, the purity of products decreased to 94% at a recovery yield of 97%. Although 99% of inorganic salts and sugars were separated from lactic acid organic acids in general and acetic acid in particular caused a purity problem. It seems that organic acids could not be separated from lactic acid by neutral resin Amberlite XAD1600. Besides the organic acid problem, some amino acids were remained in the products as impurities.  相似文献   

14.
In this study, a multi-stage membrane process, assisted by vacuum evaporation and crystallization, for recovery of bio-based alpha-ketoglutaric acid from the actual post-fermentation broth was designed and investigated. In the first part of this study, pre-treatment of crude fermentation broth (centrifugation-ultrafiltration-nanofiltration) was carried out to remove biomass, proteins, sugars, part of inorganic ions and color compounds. The commercial ceramic UF membrane (15 kDa) and nanofiltration ceramic membrane (200 Da or 450 Da) were applied. Electrodialysis with a bipolar membrane was proposed for separation of ionic compounds and simultaneous electro-acidification to the acid form. During bipolar membrane electrodialysis carried out under acidic conditions, it was possible to remove close to 90 % of alpha-ketoglutaric acid. Moreover, the migration of other acids present in the fermentation broth (lactic and acetic) was significantly limited. The calculated specific energy consumption was low and equal to 0.6 kW h/kg. The final purification using crystallization assisted vacuum evaporation allowed obtaining alpha-ketoglutaric acid in solid form. Analysis of the final product showed that the proposed method of alpha-ketoglutaric acid recovery gives the acid of high purity equal to 94.8 %. Furthermore, the presented results have practical relevance and may in future be the basis for the development of separation technologies of alpha-ketoglutaric acid from the fermentation broth on industrial scale.  相似文献   

15.
The aim of this investigation was to separate pyruvic acid of biotransformation solutions from lactic acid through complex extraction. For this purpose, complex extraction was investigated from model solutions. Tri-n-octanylamine (TOA) was used as the extractant. The effects of various diluents, the stoichiometry of pyruvic acid to TOA, and the initial pH of the aqueous phase on the extraction process were investigated in this study. The effects of sodium hydroxide (NaOH) and trimethylamine (TMA) on the back extraction process were also studied, respectively. The optimal conditions attained from the model solutions proved efficient on the biotransformation solutions of different concentrations. A total recovery of 71–82% of pyruvic acid was obtained, whereas 89–92% of lactic acid was removed. The purity of pyruvic acid reached 97% after the removal of TMA by a simple distillation.  相似文献   

16.
Crispacin A, a cell-associated bacteriocin produced by Lactobacillus crispatus JCM 2009, was purified from culture broth by ammonium sulfate precipitation, followed by ion exchange and reversed-phase chromatography. Crispacin A was also purified from the cells of L. crispatus JCM 2009 by acid extraction and reversed-phase chromatography. Purified crispacin A was determined to be 5393 Da by mass spectrometry and found not to show sequence homology with other bacteriocins from lactic acid bacteria.  相似文献   

17.
Clavulanic acid (CA) is usually used together with other β‐lactam antibiotics as combination drugs to inhibit bacterial β‐lactamases, which is mainly produced from the fermentation of microorganism such as Streptomyces clavuligerus. Recently, it is still a challenge for downstream processing of low concentration and unstable CA from fermentation broth with high solid content, high viscosity, and small cell size. In this study, an integrated process was developed for simultaneous solid–liquid separation and primary purification of CA from real fermentation broth of S. clavuligerus using salting‐out extraction system (SOES). First, different SOESs were investigated, and a suitable SOES composed of ethanol/phosphate was chosen and further optimized using the pretreated fermentation broth. Then, the optimal system composed of 20% ethanol/15% K2HPO4 and 10% KH2PO4 w/w was used to direct separation of CA from untreated fermentation broth. The result showed that the partition coefficient (K) and recovery yield (Y) of CA from untreated fermentation broth were 29.13 and 96.8%, respectively. Simultaneously, the removal rates of the cells and proteins were 99.8% and 63.3%, respectively. Compared with the traditional method of membrane filtration or liquid–liquid extraction system, this developed SOES showed the advantages of simple operation, shorter operation time, lower process cost and higher recovery yield of CA. These results demonstrated that the developed SOES could be used as an attractive alternative for the downstream processing of CA from real fermentation broth.  相似文献   

18.
A two-stage process of nanofiltration and water-splitting electrodialysis was investigated for lactic acid recovery from fermentation broth. In this process, sodium lactate is isolated from fermentation broth in the first stage of nanofiltration by using an NTR-729HF membrane, and then is converted to lactic acid in the second stage by water-splitting electrodialysis. To determine the optimal operating conditions for nanofiltration, the effects of pressure, lactate concentration, pH and known added impurities were studied. Lactate rejection was less than 5%, magnesium rejection approximated 45%, and calcium rejection was at 40%. In subsequent water-splitting electrodialysis, both the sodium lactate conversion to lactic acid and sodium hydroxide recovery, were about 95%, with a power requirement of 0.9∼1.0 kWh per kg of lactate.  相似文献   

19.
本文提出了利用海藻酸钙凝胶包埋固定化乳酸菌生产乳酸,用离子交换树脂从发酵液中分离出乳酸的新方法。该法成功地消除了产物乳酸对乳酸菌生长和产物乳酸形成的抑制作用,使发酵时间由120小时缩短到96小时,乳酸的体积生产率由0.328g/L·h提高到0.432g/L·h。  相似文献   

20.
The efficiency of bipolar electrodialysis (BED) for the recovery of lactic acid from fermentation broth was evaluated. Three systems of BED (bipolar-anion, bipolar-cation and bipolar-anion-cation) at fixed voltage (20 V) were compared using a model solution of ammonium lactate (100 g l(-1)). Results showed that bipolar-anion (BED-anion) was the most beneficial in terms of lactate flux, current efficiency, energy consumption and recovery ratio. Consequently, BED-anion was used to purify lactic acid from fermentation broth which had been pre-treated with mono-polar electrodialysis (MED). The final lactic acid concentration and lactate flux obtained were 144 g l(-1) and 393 g m(-2) h(-1), respectively. Using the two-step process (MED and BED-anion) the concentration of fermentation broth was increased by 33% and the total energy consumption was 2.76 kW h kg(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号