首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.  相似文献   

2.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

3.
Cysteine proteinases of parasitic protozoa   总被引:1,自引:0,他引:1  
Proteinases are involved with many processes in living organisms. In recent years, there has been increasing interest in elucidating the functions the enzymes perform in parasites. These studies have revealed that one class of proteinases, the cysteine proteinases, predominates in many parasitic protozoa. In this article Mick North, Jeremy Mottram and Graham Coombs review what is known about the cysteine proteinases of parasitic protozoa and discuss the approaches being pursued in attempts to design antiparasite drugs based on inhibitors or substrates of these enzymes.  相似文献   

4.
Are metacaspases caspases?   总被引:2,自引:0,他引:2       下载免费PDF全文
The identification of caspases as major regulators of apoptotic cell death in animals initiated a quest for homologous peptidases in other kingdoms. With the discovery of metacaspases in plants, fungi, and protozoa, this search had apparently reached its goal. However, there is compelling evidence that metacaspases lack caspase activity and that they are not responsible for the caspaselike activities detected during plant and fungal cell death. In this paper, we attempt to broaden the discussion of these peptidases to biological functions beyond apoptosis and cell death. We further suggest that metacaspases and paracaspases, although sharing structural and mechanistic features with the metazoan caspases, form a distinct family of clan CD cysteine peptidases.  相似文献   

5.
Proteases play causal roles in the malignant progression of human tumors. This review centers on the roles in this process of cysteine cathepsins, i.e., peptidases belonging to the papain family (C1) of the CA clan of cysteine proteases. Cysteine cathepsins, most likely along with matrix metalloproteases (MMPs) and serine proteases, degrade the extracellular matrix, thereby facilitating growth and invasion into surrounding tissue and vasculature. Studies on tumor tissues and cell lines have shown changes in expression, activity and distribution of cysteine cathepsins in numerous human cancers. Molecular, immunologic and pharmacological strategies to modulate expression and activity of cysteine cathepsins have provided evidence for a causal role for these enzymes in tumor progression and invasion. Clinically, the levels, activities and localization of cysteine cathepsins and their endogenous inhibitors have been shown to be of diagnostic and prognostic value. Understanding the roles that cysteine proteases play in cancer could lead to the development of more efficacious therapies.  相似文献   

6.
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.  相似文献   

7.
Cysteine cathepsins: cellular roadmap to different functions   总被引:2,自引:0,他引:2  
Brix K  Dunkhorst A  Mayer K  Jordans S 《Biochimie》2008,90(2):194-207
Cysteine cathepsins belong to the papain-like family C1 of clan CA cysteine peptidases. These enzymes are ubiquitously expressed and exert their proteolytic activity mainly, but not exclusively within the compartments along the endocytic pathway. Moreover, cysteine cathepsins are active in pericellular environments as soluble enzymes or bound to cell surface receptors at the plasma membrane, and possibly even within secretory vesicles, the cytosol, mitochondria, and within the nuclei of eukaryotic cells. Proteolytic actions performed by cysteine cathepsins are essential in the maintenance of homeostasis and depend heavily upon their correct sorting and trafficking within cells. As a consequence, the numerous and diverse approaches to identification, qualitative and quantitative determination, and visualization of cysteine cathepsin functions in vitro, in situ, and in vivo cover the entire spectrum of biochemistry, molecular and cell biology. This review focuses upon the transport pathways directing cysteine cathepsins to their points of action and thus emphasizes the broader role and functionality of cysteine cathepsins in a number of specific cellular locales. Such understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.  相似文献   

8.
Activity-Based Probes (ABPs) are small molecules that form stable covalent bonds with active enzymes thereby allowing detection and quantification of their activities in complex proteomes. A number of ABPs that target proteolytic enzymes have been designed based on well-characterized mechanism-based inhibitors. We describe here the evaluation of a novel series of ABPs based on the aza-aspartate inhibitory scaffold. Previous in vitro kinetic studies showed that this scaffold has a high degree of selectivity for the caspases, clan CD cysteine proteases activated during apoptotic cell death. Aza-aspartate ABPs containing either an epoxide or Michael acceptor reactive group were potent labels of executioner caspases in apoptotic cell extracts. However they were also effective labels of the clan CD protease legumain and showed unexpected crossreactivity with the clan CA protease cathepsin B. Interestingly, related aza peptides containing an acyloxymethyl ketone reactive group were relatively weak but highly selective labels of caspases. Thus azapeptide electrophiles are valuable new ABPs for both detection of a broad range of cysteine protease activities and for selective targeting of caspases. This study also highlights the importance of confirming the specificity of covalent protease inhibitors in crude proteomes using reagents such as the ABPs described here.  相似文献   

9.
Cysteine proteinases have now been detected in most of the important species of parasitic protozoa. Characterization of the enzymes and sequence determinations have revealed that the enzymes are related to papain and the mammalian cathepsins. All of the protozoan enzymes analyzed to date are members of the cathepsin L/cathepsin H/papain branch of the papain superfamily and are more distantly related to cathepsin B. They thus share some characteristics with the cysteine proteinases of their hosts. Individual enzymes, however, are likely to have sufficient novel features to be potential targets for specific antiprotozoal drugs, and a number of proteinase inhibitors and substrates are currently being tested as possible chemotherapeutic agents.  相似文献   

10.
Cystatins   总被引:1,自引:0,他引:1  
Chicken egg white cystatin was first described in the late 1960s. Since then, our knowledge about a superfamily of similar proteins present in mammals, birds, fish, insects, plants and some protozoa has expanded, and their properties as potent peptidase inhibitors have been firmly established. Today, 12 functional chicken cystatin relatives are known in humans, but a few evolutionarily related gene products still remain to be characterized. The type 1 cystatins (A and B) are mainly intracellular, the type 2 cystatins (C, D, E/M, F, G, S, SN and SA) are extracellular, and the type 3 cystatins (L- and H-kininogens) are intravascular proteins. All true cystatins inhibit cysteine peptidases of the papain (C1) family, and some also inhibit legumain (C13) family enzymes. These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but may also participate in the defence against microbial infections. In this chapter, we have aimed to summarize our present knowledge about the human cystatins.  相似文献   

11.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

12.
Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.  相似文献   

13.
Thiol-based redox metabolism of protozoan parasites   总被引:4,自引:0,他引:4  
The review considers redox enzymes of Plasmodium spp., Trypanosomatida, Trichomonas, Entamoeba and Giardia, with special emphasis on their potential use as targets for drug development. Thiol-based redox systems play pivotal roles in the success and survival of these parasitic protozoa. The synthesis of cysteine, the key molecule of any thiol metabolism, has been elucidated in trypanosomatids and anaerobes. In trypanosomatids, trypanothione replaces the more common glutathione system. The enzymes of trypanothione synthesis have recently been identified. The role of trypanothione in the detoxification of reactive oxygen species is reflected in the multiplicity of trypanothione-dependent peroxidases. In Plasmodium falciparum, the crystal structures of glutathione reductase and glutamate dehydrogenase are now available; another drug target, thioredoxin reductase, has been demonstrated to be essential for the malarial parasite.  相似文献   

14.
Clan CA, family C1 cysteine peptidases (CPs) are important virulence factors and drug targets in parasites that cause neglected diseases. Natural CP inhibitors of the I42 family, known as ICP, occur in some protozoa and bacterial pathogens but are absent from metazoa. They are active against both parasite and mammalian CPs, despite having no sequence similarity with other classes of CP inhibitor. Recent data suggest that Leishmania mexicana ICP plays an important role in host-parasite interactions. We have now solved the structure of ICP from L. mexicana by NMR and shown that it adopts a type of immunoglobulin-like fold not previously reported in lower eukaryotes or bacteria. The structure places three loops containing highly conserved residues at one end of the molecule, one loop being highly mobile. Interaction studies with CPs confirm the importance of these loops for the interaction between ICP and CPs and suggest the mechanism of inhibition. Structure-guided mutagenesis of ICP has revealed that residues in the mobile loop are critical for CP inhibition. Data-driven docking models support the importance of the loops in the ICP-CP interaction. This study provides structural evidence for the convergent evolution from an immunoglobulin fold of CP inhibitors with a cystatin-like mechanism.  相似文献   

15.
Amin A  Nöbauer K  Patzl M  Berger E  Hess M  Bilic I 《PloS one》2012,7(5):e37417
Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon.  相似文献   

16.
Legumain is a lysosomal cysteine peptidase specific for an asparagine residue in the P1-position. It has been classified as a member of clan CD peptidases due to predicted structural similarities to caspases and gingipains. So far, inhibition studies on legumain are limited by the use of endogenous inhibitors such as cystatin C. A series of Michael acceptor inhibitors based on the backbone Cbz-L-Ala-L-Ala-L-Asn (Cbz= benzyloxycarbonyl) has been prepared and resulted in an irreversible inhibition of porcine legumain. Variation of the molecular size within the 'war head' revealed the best inhibition for the compound containing the allyl ester (kobs/I=766 M(-1) s(-1)). To overcome cyclisation between the amide moiety of the Asn residue and the 'war head', several asparagine analogues have been synthesised. Integrated in halomethylketone inhibitors, azaasparagine is accepted by legumain in the P1-position. The most potent inhibitor of this series, Cbz-L-Ala-L-Ala-AzaAsn-chloromethylketone, displays a k(obs)/I value of 139,000 M(-1) s(-1). Other cysteine peptidases, such as papain and cathepsin B, are not inhibited by this compound at concentrations up to 100 microM. The synthetic inhibitors described here represent useful tools for the investigation of the structural and physiological properties of this unique asparagine-specific peptidase.  相似文献   

17.
Ticks are ectoparasitic blood-feeders and important vectors for pathogens including arboviruses, rickettsiae, spirochetes and protozoa. As obligate blood-feeders, one possible strategy to retard disease transmission is disruption of the parasite's ability to digest host proteins. However, the constituent peptidases in the parasite gut and their potential interplay in the digestion of the blood meal are poorly understood. We have characterised a novel asparaginyl endopeptidase (legumain) from the hard tick Ixodes ricinus (termed IrAE), which we believe is the first such characterisation of a clan CD family C13 cysteine peptidase (protease) in arthropods. By RT-PCR of different tissues, IrAE mRNA was only expressed in the tick gut. Indirect immunofluorescence and EM localised IrAE in the digestive vesicles of gut cells and within the peritrophic matrix. IrAE was functionally expressed in Pichia pastoris and reacted with a specific peptidyl fluorogenic substrate, and acyloxymethyl ketone and aza-asparagine Michael acceptor inhibitors. IrAE activity was unstable at pH > or = 6.0 and was shown to have a strict specificity for asparagine at P1 using a positional scanning synthetic combinatorial library. The enzyme hydrolyzed protein substrates with a pH optimum of 4.5, consistent with the pH of gut cell digestive vesicles. Thus, IrAE cleaved the major protein of the blood meal, hemoglobin, to a predominant peptide of 4kDa. Also, IrAE trans-processed and activated the zymogen form of Schistosoma mansoni cathepsin B1 -- an enzyme contributing to hemoglobin digestion in the gut of that bloodfluke. The possible functions of IrAE in the gut digestive processes of I. ricinus are compared with those suggested for other hematophagous parasites.  相似文献   

18.
19.
Regulation of proteolytic enzyme activity is an essential requirement for cells and tissues because proteolysis at a wrong time and location may be lethal. Proteases are synthesized as inactive or less active precursor molecules in order to prevent such inappropriate proteolysis. They are activated by limited intra- or intermolecular proteolysis cleaving off an inhibitory peptide. These regulatory proenzyme regions have attracted much attention during the last decade, since it became obvious that they harbour much more information than just triggering activation. In this review we summarize the structural background of three functions of clan CA1 cysteine peptidase (papain family) proparts, namely the selectivity of their inhibitory potency, the participation in correct intracellular targeting and assistance in folding of the mature enzyme. Today, we know more than 500 cysteine peptidases of this family from the plant and animal kingdoms, e.g. papain and the lysosomal cathepsins L and B. As it will be shown, the propeptide functions are determined by certain structural motifs conserved over millions of years of evolution.  相似文献   

20.
Cysteine peptidases have potent activities in the pathogenesis of various parasitic infections, and are considered as targets for chemotherapy and antigens for vaccine. In this study, two cathepsin B-like cysteine peptidases (EmCBP1 and EmCBP2) from Echinococcus multilocularis metacestodes were identified and characterized. Immunoblot analyses demonstrated that EmCBP1 and EmCBP2 were present in excretory/secretory products and extracts of E. multilocularis metacestodes. By immunohistochemistry, EmCBP1 and EmCBP2 were shown to localize to the germinal layer, the brood capsule and the protoscolex. Recombinant EmCBP1 and EmCBP2 expressed in Pichia pastoris, at optimum pH 5.5, exhibited substrate preferences for Z-Phe-Arg-MCA, Z-Val-Val-Arg-MCA, and Z-Leu-Arg-MCA, and low levels of hydrolysis of Z-Arg-Arg-MCA. Furthermore, recombinant enzymes degraded IgG, albumin, type I and IV collagens, and fibronectin. These results suggested that EmCBP1 and EmCBP2 may play key roles in protein digestion for parasites’ nutrition and in parasite–host interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号