首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of the cadmium-binding protein, metallothionein, was studied in rat liver and kidney after injection of cadmium chloride. A simplified procedure for the isolation of metallothionein from liver and kidney tissues was devised. It was found that the concentration of a subcutaneously injected dose of 30 μmoles of 109CdCl2/kg in the liver reached the maximum within 36 h. Thereafter, a slow decrease in the concentration of the isotope was noted during the 3 week period. In the kidney, the isotope was taken up in two phases. During the first phase the uptake was faster and lasted for about 4 days. The second phase of 109Cd accumulation showed a slower increase in the concentration of the isotope. In both liver and kidney tissues 75–80% of the 109Cd was associated with metallothionein. Amino acid incorporation studies revealed that active biosynthesis of metallothionein took place in the kidney as well as in the liver of cadmium-exposed rats. The turnover of 35S-labeled metallothionein was also investigated and the half-lives of the hepatic and the renal metallothionein were found to be 2.8 and 5 days, respectively.  相似文献   

2.
1. The accumulation of cadmium in the liver, kidney and gills of rainbow trout and stone loach was measured during exposure of the fish to the metal at 3 smg/l in their aquarium water. The pattern of accumulation of the toxic metal in the individual organs was different between the two species.2. The tissue concentrations of metallothionein-specific mRNA and metallothionein protein were also determined in these organs from the same fish. In rainbow trout, the induction of metallothionein gene expression resulted in a gradual increase in metallothionein concentration in gill over the course of the experiment whereas increases in metallothionein in the liver and kidney were detected only at the later time points of analysis (beyond 19 weeks). By contrast, in the same tissues from stone loach, relatively minor changes were quantified in specific mRNA and metallothionein concentrations.3. Throughout the experimental period, tissue concentrations of zinc and copper were determined in the liver, kidney and gills of the rainbow trout and stone loach. Subtle decreases were observed in the zinc concentration of gills in rainbow trout and substantial increases were observed in the hepatic copper concentrations in both species at the later time points of analysis.4. The ability of cadmium to induce metallothionein gene expression and its subsequent ability to compete for the sequestration sites on the newly-synthesized protein is discussed with regard to the relative levels of cadmium, zinc and copper in the organs studied and differing regimes of cadmium administration.  相似文献   

3.
4.
Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30?mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.  相似文献   

5.
6.
Rats and hamsters, (pre)-treated with copper and cadmium, were used to investigate whether species-differences in renal metallothionein synthesis in response to gold were determined by changes in the kidney concentrations of other metals. The effects of both dietary copper limitation and excess on the renal metabolism of gold also were studied in the rat. In this species, all of the pre-treatments affected the renal concentrations of total and metallothionein-bound copper, but none of them altered either the kidney uptake or thionein-binding of gold. Incorporation of zinc into the metallothionein, which accompanied the binding of gold in this fraction of the kidney, however, was influenced slightly by the pretreatments. In hamsters, pretreatment with cadmium, which increased the concentrations of total and thionein-bound zinc in the kidneys, also did not affect the renal uptake of gold, although it increased significantly the binding of gold to the metallothionein fraction of the renal cytosol. This increased binding of gold also was accompanied by further increases in the zinc and copper contents of the metallothionein; the contents of total and thionein-bound cadmium, however, remained essentially unchanged. Concentrations of copper and zinc in the hamster kidney were not affected significantly by subcutaneous administration of copper alone (five daily doses, each of 3.2 mg Cu/kg body wt.), but were increased when gold was given during the copper-treatment. The concentrations of gold, copper and zinc in the renal metallothionein fraction also were increased under these conditions. From these results it seems that kidney metallothionein synthesis in response to gold may be related to the changes in either the concentration or distribution of zinc, rather than copper.  相似文献   

7.
The effect of parenteral zinc on tissue metallothionein (MT) was studied in normal and streptozotocin-induced diabetic rats. The accumulation of Zn-MT in liver and pancreas of normal and diabetic rats following the administration (ip) of various amounts of zinc was not different. Renal Zn-MT was higher in the diabetic group, and this was not changed by zinc injection. Although diabetic rats, relative to normal, possessed a markedly higher concentration of Cu-MT in kidney initially, this difference decreased considerably after zinc injection. The ratio of Cu-MT to cytosolic Cu in kidney was not affected by parenteral zinc and was highest in diabetic rats. Zinc injection markedly reduced food intake, water consumption, and urine output in both normal and diabetic rats. Blood glucose of diabetic rats also decreased 24 h after zinc administration. Our results indicate that relative to normal, MT and zinc metabolism are different in kidney, and to some extent liver, but not different in the pancreas of the chemically induced diabetic rat.  相似文献   

8.
9.
To evaluate the effect of pre‐ or posttreatment of selenium (6 μmol/kg b.w., single intraperitoneal injection) in mercury intoxication, rats were exposed to mercury (12 μmol/kg b.w., single intraperitoneal injection). Exposure to mercury resulted in induced oxidative stress in liver, kidney, and brain tissues. Marked changes in serum biochemical parameters together with alterations in histopathology and an induction in metallothionein‐I and metallothionein‐II mRNA expression in the liver and kidney were observed. Pretreatment with selenium to mercury‐exposed animals had protective effect on the liver, whereas posttreatment had partial protection on restoration of altered oxidative stress parameters. In the kidney, pretreatment with selenium showed partial protection on restoration of altered biochemical parameters, whereas no protection was observed in posttreatment. The pretreatment with selenium resulted in restoration of mercury‐induced metallothionein‐I and metallothionein‐II mRNA expression, which was completely restored in the liver whereas partial restoration was observed in the kidney. Posttreatment with selenium resulted in further induction in metallothionein‐I and metallothionein‐II mRNA expression in the liver and kidney. In the brain, selenium showed partial protection on alerted biochemical parameters. Results indicate that pretreatment with selenium is beneficial in comparison to posttreatment in mercury intoxication. Thus, dietary intake of selenium within safe limit may, therefore, enable us in combating any foreseen effects due to mercury exposure. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:123–135, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20320  相似文献   

10.
1. When rainbow trout were exposed to cadmium by intraperitoneal injection, there was a rapid (within 3hr) and significant (approx. 63%) loss of the metal from the whole bodies of the fish.2. Of the metal retained in the bodies of the fish (approx. 37% of the injected dose), more than 98% was accounted for collectively among the liver, kidney and gills.3. Subsequent maintenance of the rainbow trout in fresh water for up to 98 days post-metal administration, indicated that there was no further loss of the cadmium accumulated in the organs studied and that the distribution of the metal among the liver, kidney and gills remained unchanged over that period.4. During this 98-day period of maintenance of the fish, tissue concentrations of metallothionein-specific mRNA and metallothionein protein were quantified using riboprobe and ELISA systems respectively. Metallothionein-specific mRNA concentrations increased rapidly (within 24 hr) before falling back to levels similar to, or slightly greater than, those found in control animals. The concentration of metallothionein protein also increased significantly (within 3 days) then remained elevated thereafter.5. Throughout the experimental period, the concentrations of zinc and copper were also monitored in the liver, kidney and gills of the rainbow trout. The concentrations of each ion differed between each of the organs but did not change during the experiment.6. The induction of metallothionein gene expression by cadmium in the liver, kidney and gill of rainbow trout and the subsequent sequestration of the toxic metal is discussed with regard to the relative levels of these other essential metal ions.  相似文献   

11.
Nephrotoxicity is the dose-limiting toxic effect of cis-dichlorodiammineplatinum (cis-platin) in humans. Its stereoisomer transplatin does not have any toxicity at equimolar concentrations, and it also possesses little antitumor activity. In this study, subcellular localization of both the platinum isomers was examined in the liver and kidney of the mouse 24 hours following the drug administration. Levels of the platinum isomers were measured using flame-less atomic absorption. The results showed that higher concentrations of the cis isomer were localized in the liver and kidney, while the concentration of the trans isomer was higher in blood. This indicates that trans isomer is sequestered in the central compartment, whereas cis isomer is distributed in the organs. We also measured metallothionein mRNA and protein levels in both liver and kidney following cisdichlorodiammineplatinum and transdichlorodiammine-platinum treatment to distinguish if the differential toxicity of the two stereo-isomers could be related to metallothionein induction. We report here that cisplatin was capable of inducing metallothionein expression in mice in vivo and that there is an inverse relationship between metallothionein expression and the pattern of tissue toxicity induced by the drug.  相似文献   

12.
Recent studies have suggested that the induction of metallothionein synthesis in kidneys of mice by the acute administration of bismuth and other trace elements might protect against cis-diamminedichloroplatinum (II) nephrotoxicity. The present study was designed to determine the effects of dietary zinc and cis-diamminedichloroplatinum (II) on the induction of liver and kidney metallothionein and its subsequent effect on nephrotoxicity and trace element metabolism in rats. Male rats were fed diets containing 5, 20, 80, or 320 mg zinc/kg diet for 3 weeks. Each dietary group was subdivided into 3 groups. In one group, each rat received an i.p. injection of 7.5 mg cis-diamminedichloroplatinum (II)/kg b.w. All other rats received saline. During the next three days a second group of rats was pair-fed to the cis-diamminedichloroplatinum (II) injected group. A third group received no treatment and was allowed to eat ad libitum. Results showed that when dietary zinc was increased from 5 mg/kg diet to higher amounts, kidney metallothionein concentration increased twofold. cis-diamminedichloroplatinum (II) treatment increased kidney metallothionein even further, but elevated metallothionein gave no protection from the toxic effects of the drug. Serum copper concentration and ceruloplasmin activity were significantly lower with higher concentrations of dietary zinc, which indicated that these rats were mildly copper-deficient. There was a small but significant depression of superoxide dismutase activity and a highly significant increase in thiobarbituric acid reactive substances in kidneys of rats treated with cis-diamminedichloroplatinum (II) compared to either pair-fed or ad libitum controls. This supports the hypothesis that part of the mechanism for cis-diamminedichloroplatinum (II)-induced toxicity might be caused by free-radical generation. However, the data do not support the hypothesis that metallothionein induction protects the kidney from cis-diamminedichloroplatinum (II) toxicity.  相似文献   

13.
Different groups of mice were injected with cadmium, zinc and mercury. Zinc injections had no effect on zinc tissue levels while both mercury and cadmium accumulated in various tissues. Cadmium persisted in the tissues much longer than mercury, and while the mercury concentrations began to decline as soon as dosing ceased, cadmium concentrations in kidney and intestine increased even after dosing ceased. There appeared to be an interrelationship between cadmium concentrations in spleen and intestine which warrants some further investigations. There was a linear, but discontinuous, effect of cadmium on zinc concentrations in liver, kidney and pancreas which may depend on metallothionein biochemistry. Mercury injections had no effect on zinc metabolism. It is proposed that differences in the rate of excretion of cadmium and mercury from the kidney could explain the differential accumulation of cadmium and mercury in animals.  相似文献   

14.
1. Carp were bred in Cd solution, and each organ was homogenized and centrifuged at 105,000 g. The Cd content of the supernatant was much more than that of the precipitate. 2. In examining the metal form in the supernatant, the induction of metallothionein (MT) was found in carp exposed to Cd and Zn solutions and the presence of metallothionein was found in fish captured in Nagara river and breeding ponds. 3. Cd content in the metallothionein fraction of hepato-pancreas increased at the early stages of exposure, but Cd in the metallothionein fraction of the other organs increased as time proceeded. 4. In the tap water group, metallothionein in hepato-pancreas and kidney contained Cu, and increased with the induction of metallothionein in hepato-pancreas due to Zn-exposure.  相似文献   

15.
The interactions between two essential metals, Cu and Zn, and the localization and concentration of metallothionein have been studied in rat liver and kidney. Rats receiving daily intraperitoneal injections of Cu for 3 days, or Zn for 2 days, or Cu for 3 days followed by Zn for 2 days, were sacrificed 24, 72, 120h after the final injection. Our data indicate that Cu and Zn are both good inductors of metallothionein synthesis in rat tissues. Synergism between Cu and Zn in metallothionein synthesis was also observed as indicated by immunocytochemical experiments and chemical analysis. Moreover, in rats injected with Cu followed by Zn, the localization of metallothionein and the concentrations of both metallothionein and metal differed over time according to the organs considered. In rat kidney, a delay in the excretory process was also observed and metallothionein was present 120h after the last injection.  相似文献   

16.
Nephrin is a crucial podocyte molecule in the kidney glomerular filtration barrier and it is also expressed in Langerhans islet beta cells of the pancreas. Recently, genetic mapping of proteinuric kidney disease genes and animal models have revealed further important molecules for the kidney filtration function including alpha-actinin-4, podocin, FAT, and NEPH1. This study was addressed to explore the pancreatic expression of the podocyte molecules podocin, FAT, alpha-actinin-4, NEPH1, NEPH2, filtrin/NEPH3, synaptopodin and CD2 associated protein (CD2AP). The mRNA and protein expressions were studied by RT-PCR and immunoblotting, and localization in the pancreas was investigated by immunofluorescence. Of the nephrin-associated podocyte proteins, filtrin/NEPH3, FAT, and alpha-actinin-4 were found to be expressed in the pancreas at the gene and protein level and localized to Langerhans islets. Immunoreactivity with the podocin antibody was detected mostly in the exocrine pancreas. NEPH1 and synaptopodin expression was detected only at the mRNA level. Further studies are needed to unravel the functional role of these podocyte-associated molecules in the pancreatic Langerhans islets.  相似文献   

17.
18.
Intubation of rats with alpha-mercapto-beta-(2-furyl)-acrylic acid (MFA) for 5 days at 50 mg/kg caused a 7-fold increase in kidney copper concentration, a 2-fold increase in kidney zinc concentration, and a 20% increase in liver zinc concentration. The proteins which bound the increased metals were purified and identified as metallothioneins by their amino acid compositions. Two isoforms were isolated from each organ. Renal thioneins appeared identical to counterpart hepatic apoproteins, but the former bound Cu and Zn in a 2:1 mole ratio and the latter bound only Zn. Kidney contained over 10 times more metallothionein per g of tissue than did liver. In rats previously administered MFA, injection of cadmium sulfate resulted in rapid displacement of liver metallothionein-bound Zn by Cd under conditions where minimal metallothionein was found in Cd-dosed animals not administered MFA. We conclude that MFA induces metallothionein biosynthesis in kidney and liver of normal rats; this is a novel effect for an organic compound.  相似文献   

19.
Uptake of glycine-N15 by components of cell nuclei   总被引:9,自引:0,他引:9  
1. The uptake of glycine-N15 by components of cell nuclei was studied. The nuclear components were derived both from tissues with high metabolic rates-mammalian liver, kidney, and pancreas-and from cells with relatively low rates of metabolism-avian erythrocytes and echinoderm sperm. N15 uptake by nuclear components of liver, kidney, and pancreas was far more rapid than by those of erythrocytes and sperm. 2. The nuclear components of liver, kidney, and pancreas for which measurements were made were DNA, histone, and residual protein of chromatin. Uptake into DNA was low, into histone higher, and into residual protein much higher still, being comparable with that into mixed cytoplasmic protein. 3. A comparison of the uptake of N15 by the chromosomal components, histone and DNA of liver, pancreas, and kidney showed that chromosomal "activity" varies in different cells and also in the same cell depending upon its over-all activity.  相似文献   

20.
The concentrations of zinc, copper, and manganese in liver, kidney, duodenum, pancreas, testes, bone, and serum from control and untreated, spontaneously diabetic BB Wistar rats were compared. Chronic insulin deficiency resulted in significant alterations in the concentrations of one or more of these essential micronutrients in several tissues. The amounts of zinc and copper bound to metallothionein in the liver and kidney of untreated spontaneously diabetic rats were also markedly increased. The tissue trace metal status in diabetic rats was altered similarly in both male and female rats. Daily injections of insulin blocked many of the changes in the tissue concentrations of the metals. The effects of spontaneous diabetes on tissue trace metal status are quite similar to those reported for chemically induced diabetes. Thus, these results demonstrate that chronic endocrine imbalance is responsible for a series of tissue specific changes in the transport and metabolism of zinc, copper, and manganese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号